Spaces:
Sleeping
Sleeping
File size: 14,009 Bytes
a8d09b2 fcfc654 a8d09b2 9ecf6e0 5023c74 6dda383 99c2740 5f9d608 99c2740 fcfc654 a8d09b2 98f0179 a8d09b2 98f0179 5023c74 98f0179 5023c74 9ecf6e0 98f0179 fcfc654 98f0179 6dda383 98f0179 a8d09b2 fcfc654 a8d09b2 fcfc654 a8d09b2 5f9d608 666a38f a8d09b2 7c2e7ac 9ecf6e0 7c2e7ac 9ecf6e0 7c2e7ac 99c2740 6dda383 9ecf6e0 98f0179 9ecf6e0 98f0179 5023c74 6dda383 99c2740 6dda383 99c2740 a8d09b2 5023c74 b67984f a8d09b2 5023c74 9ecf6e0 a8d09b2 9d0ca90 a8d09b2 9ecf6e0 98f0179 a8d09b2 5f9d608 666a38f 5f9d608 9ecf6e0 6dda383 99c2740 6dda383 a8d09b2 d43019d 9ecf6e0 a8d09b2 666a38f 9ecf6e0 a8d09b2 99c2740 5f9d608 666a38f 99c2740 6dda383 99c2740 666a38f 99c2740 a8d09b2 99c2740 a8d09b2 99c2740 a8d09b2 fcfc654 a8d09b2 99c2740 a8d09b2 8856e7f a8d09b2 8856e7f a8d09b2 8856e7f a8d09b2 99c2740 a8d09b2 99c2740 fcfc654 a8d09b2 99c2740 9ecf6e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import json
import duckdb
import gradio as gr
import pandas as pd
import pandera as pa
from pandera import Column
import ydata_profiling as pp
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langsmith import traceable
from langchain import hub
import warnings
import dlt
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Height of the Tabs Text Area
TAB_LINES = 8
#----------CONNECT TO DATABASE----------
md_token = os.getenv('MD_TOKEN')
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
#---------------------------------------
#-------LOAD HUGGINGFACE-------
models = ["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct"]
model_loaded = False
for model in models:
try:
endpoint = HuggingFaceEndpoint(repo_id=model, max_new_tokens=8192)
info = endpoint.client.get_endpoint_info()
model_loaded = True
break
except Exception as e:
print(f"Error for model {model}: {e}")
continue
llm = ChatHuggingFace(llm=endpoint).bind(max_tokens=8192)
#---------------------------------------
#-----LOAD PROMPT FROM LANCHAIN HUB-----
prompt_autogenerate = hub.pull("autogenerate-rules-testworkflow")
prompt_user_input = hub.pull("usergenerate-rules-testworkflow")
#--------------ALL UTILS----------------
# Get Databases
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables_names(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_table_names(schema_name):
tables = get_tables_names(schema_name)
return gr.update(choices=tables)
# def get_data_df(schema):
# print('Getting Dataframe from the Database')
# return conn.sql(f"SELECT * FROM {schema} LIMIT 1000")
@dlt.resource
def fetch_data(schema):
result = conn.sql(f"SELECT * FROM {schema} LIMIT 1000")
while True:
chunk_df = result.fetch_df_chunk(2)
if chunk_df is None or len(chunk_df) == 0:
break
else:
yield chunk_df
def create_pipeline(schema):
dataset_name = schema.split('.')[1]
print("Dataset Name: ", dataset_name)
table_name = schema.split('.')[2]
print("Table Name: ", table_name)
pipeline =dlt.pipeline(
pipeline_name='duckdb_pipeline',
destination='duckdb',
dataset_name= dataset_name,
)
load_info = pipeline.run(fetch_data(schema), table_name = table_name,
write_disposition = "replace")
print(load_info)
return dataset_name + "." + table_name
def load_pipeline(table_name):
_conn = duckdb.connect("duckdb_pipeline.duckdb")
return _conn, _conn.sql(f"SELECT * FROM {table_name} LIMIT 1000").df()
def df_summary(df):
summary = []
for column in df.columns:
if pd.api.types.is_numeric_dtype(df[column]):
summary.append({
"column": column,
"max": df[column].max(),
"min": df[column].min(),
"count": df[column].count(),
"nunique": df[column].nunique(),
"dtype": str(df[column].dtype),
"top": None
})
elif pd.api.types.is_categorical_dtype(df[column]) or pd.api.types.is_object_dtype(df[column]):
top_value = df[column].mode().iloc[0] if not df[column].mode().empty else None
summary.append({
"column": column,
"max": None,
"min": None,
"count": df[column].count(),
"nunique": df[column].nunique(),
"dtype": str(df[column].dtype),
"top": top_value
})
summary_df = pd.DataFrame(summary)
return summary_df.reset_index(drop=True)
def format_prompt(df):
summary = df_summary(df)
return prompt_autogenerate.format_prompt(data=df.head().to_json(orient='records'),
summary=summary.to_json(orient='records'))
def format_user_prompt(df):
return prompt_user_input.format_prompt(data=df.head().to_json(orient='records'))
def process_inputs(inputs) :
return {'input_query': inputs['messages'].to_messages()[1]}
@traceable(process_inputs=process_inputs)
def run_llm(messages):
try:
response = llm.invoke(messages)
print(response.content.replace("```", "'''").replace("json", ""))
tests = json.loads(response.content.replace("```", "").replace("json", ""))
except Exception as e:
return e
return tests
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return full_path
def describe(df):
numerical_info = pd.DataFrame()
categorical_info = pd.DataFrame()
if len(df.select_dtypes(include=['number']).columns) >= 1:
numerical_info = df.select_dtypes(include=['number']).describe().T.reset_index()
numerical_info.rename(columns={'index': 'column'}, inplace=True)
if len(df.select_dtypes(include=['object']).columns) >= 1:
categorical_info = df.select_dtypes(include=['object']).describe().T.reset_index()
categorical_info.rename(columns={'index': 'column'}, inplace=True)
return numerical_info, categorical_info
def validate_pandera(tests, df):
validation_results = []
for test in tests:
column_name = test['column_name']
try:
rule = eval(test['pandera_rule'])
validated_column = rule(df[[column_name]])
validation_results.append({
"Columns": column_name,
"Result": "✅ Pass"
})
except Exception as e:
validation_results.append({
"Columns": column_name,
"Result": f"❌ Fail - {str(e)}"
})
return pd.DataFrame(validation_results)
def statistics(df):
profile = pp.ProfileReport(df)
report_dict = profile.get_description()
description, alerts = report_dict.table, report_dict.alerts
# Statistics
mapping = {
'n': 'Number of observations',
'n_var': 'Number of variables',
'n_cells_missing': 'Number of cells missing',
'n_vars_with_missing': 'Number of columns with missing data',
'n_vars_all_missing': 'Columns with all missing data',
'p_cells_missing': 'Missing cells (%)',
'n_duplicates': 'Duplicated rows',
'p_duplicates': 'Duplicated rows (%)',
}
updated_data = {mapping.get(k, k): v for k, v in description.items() if k != 'types'}
# Add flattened types information
if 'Text' in description.get('types', {}):
updated_data['Number of text columns'] = description['types']['Text']
if 'Categorical' in description.get('types', {}):
updated_data['Number of categorical columns'] = description['types']['Categorical']
if 'Numeric' in description.get('types', {}):
updated_data['Number of numeric columns'] = description['types']['Numeric']
if 'DateTime' in description.get('types', {}):
updated_data['Number of datetime columns'] = description['types']['DateTime']
df_statistics = pd.DataFrame(list(updated_data.items()), columns=['Statistic Description', 'Value'])
df_statistics['Value'] = df_statistics['Value'].astype(int)
# Alerts
alerts_list = [(str(alert).replace('[', '').replace(']', ''), alert.alert_type_name) for alert in alerts]
df_alerts = pd.DataFrame(alerts_list, columns=['Data Quality Issue', 'Category'])
return df_statistics, df_alerts
#---------------------------------------
# Main Function
def main(table):
schema = get_table_schema(table)
# Create dlt pipeline
table_name = create_pipeline(schema)
# Load dlt pipeline
connection, df = load_pipeline(table_name)
# df = get_data_df(schema)
df_statistics, df_alerts = statistics(df)
describe_num, describe_cat = describe(df)
messages = format_prompt(df=df)
tests = run_llm(messages)
if isinstance(tests, Exception):
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests, pd.DataFrame([])
tests_df = pd.DataFrame(tests)
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
pandera_results = validate_pandera(tests, df)
connection.close()
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests_df, pandera_results
def user_results(table, text_query):
schema = get_table_schema(table)
# Create dlt pipeline
table_name = create_pipeline(schema)
# Load dlt pipeline
connection, df = load_pipeline(table_name)
messages = format_user_prompt(df=df, user_description=text_query)
print(f'Generated Tests from user input: {tests}')
if isinstance(tests, Exception):
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
return tests, pd.DataFrame([])
tests_df = pd.DataFrame(tests)
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
pandera_results = validate_pandera(tests, df)
connection.close()
return tests_df, pandera_results
# Custom CSS styling
custom_css = """
print('Validated Tests with Pandera')
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Dataset Test Workflow</strong>
<br>
<span style='font-size: 20px;'>Implement and Automate Data Validation Processes.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Row():
generate_result = gr.Button("Validate Data", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Description"):
with gr.Row():
with gr.Column():
data_description = gr.DataFrame(label="Data Description", value=[], interactive=False)
with gr.Row():
with gr.Column():
describe_cat = gr.DataFrame(label="Categorical Information", value=[], interactive=False)
with gr.Column():
describe_num = gr.DataFrame(label="Numerical Information", value=[], interactive=False)
with gr.Tab("Alerts"):
data_alerts = gr.DataFrame(label="Alerts", value=[], interactive=False)
with gr.Tab("Rules & Validations"):
tests_output = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
test_result_output = gr.DataFrame(label="Validation Result", value=[], interactive=False)
with gr.Tab("Data"):
result_output = gr.DataFrame(label="Dataframe (10 Rows)", value=[], interactive=False)
with gr.Tab('Text to Validation'):
with gr.Row():
query_input = gr.Textbox(lines=5, label="Text Query", placeholder="Enter Text Query to Generate Validation e.g. Validate that the incident_zip column contains valid 5-digit ZIP codes.")
with gr.Row():
with gr.Column():
pass
with gr.Column(scale=1, min_width=50):
user_generate_result = gr.Button("Validate Data", variant="primary" )
with gr.Row():
with gr.Column():
query_tests = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
with gr.Column():
query_result = gr.DataFrame(label="Validation Result", value=[], interactive=False)
schema_dropdown.change(update_table_names, inputs=schema_dropdown, outputs=tables_dropdown)
generate_result.click(main, inputs=[tables_dropdown], outputs=[result_output, data_description, data_alerts, describe_cat, describe_num, tests_output, test_result_output])
user_generate_result.click(user_results, inputs=[tables_dropdown, query_input], outputs=[query_tests, query_result])
if __name__ == "__main__":
demo.launch(debug=True)
|