dawid-lorek's picture
Update agent.py
e14ee37 verified
raw
history blame
5.17 kB
import os
import requests
import mimetypes
from openai import OpenAI
from duckduckgo_search import DDGS
from PIL import Image
import pytesseract
import io
import openpyxl
class GaiaAgent:
def __init__(self):
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
self.instructions = (
"You are a top-tier research assistant for the GAIA benchmark. "
"You analyze documents, reason step by step, and always provide a single, concise, and correct answer. "
"If a file is provided, extract all relevant information. Use only information from the question and file. "
"Always output only 'Final Answer: <answer>' as the last line, no explanation after."
)
self.api_url = "https://agents-course-unit4-scoring.hf.space"
def fetch_file(self, task_id: str):
try:
url = f"{self.api_url}/files/{task_id}"
resp = requests.get(url, timeout=15)
resp.raise_for_status()
content_type = resp.headers.get("Content-Type", "")
return resp.content, content_type
except Exception as e:
return None, None
def ocr_image(self, img_bytes):
try:
img = Image.open(io.BytesIO(img_bytes))
return pytesseract.image_to_string(img)
except Exception as e:
return "[ERROR: Unable to OCR image]"
def read_excel(self, file_bytes):
try:
wb = openpyxl.load_workbook(io.BytesIO(file_bytes), data_only=True)
sheet = wb.active
rows = list(sheet.iter_rows(values_only=True))
text = "\n".join(["\t".join(str(cell) if cell is not None else "" for cell in row) for row in rows])
return text
except Exception as e:
return "[ERROR: Unable to read Excel file]"
def web_search(self, query, max_results=3):
try:
ddgs = DDGS()
results = ddgs.text(query)
summaries = []
for i, r in enumerate(results):
if i >= max_results: break
summaries.append(f"{r['title']}: {r['body']}")
return "\n".join(summaries)
except Exception as e:
return f"[ERROR: Web search failed: {e}]"
def call_llm(self, prompt):
response = self.client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": self.instructions},
{"role": "user", "content": prompt}
],
temperature=0.0,
max_tokens=1024,
)
return response.choices[0].message.content.strip()
def parse_final_answer(self, text):
for line in reversed(text.splitlines()):
if "Final Answer:" in line:
return line.replace("Final Answer:", "").strip()
# fallback
return text.strip()
def __call__(self, question: str, task_id: str = None) -> str:
file_context = ""
file_text = ""
file_type = None
# Step 1: Download and process file if provided
if task_id:
file_bytes, content_type = self.fetch_file(task_id)
if not file_bytes or not content_type:
file_context = "[ERROR: Could not download file]"
elif "image" in content_type:
file_text = self.ocr_image(file_bytes)
file_context = f"Extracted text from image:\n{file_text}\n"
elif "spreadsheet" in content_type or "excel" in content_type or task_id.endswith(".xlsx"):
file_text = self.read_excel(file_bytes)
file_context = f"Extracted text from Excel:\n{file_text}\n"
elif "text" in content_type or "csv" in content_type or "json" in content_type:
file_text = file_bytes.decode(errors="ignore")[:6000]
file_context = f"File content:\n{file_text}\n"
else:
file_context = "[Unsupported or unknown file type]\n"
# Step 2: Use web search for open-domain/factual questions
# Basic heuristics: if the question is about a person, place, number, award, year, etc., try a search
search_needed = False
search_keywords = ["who", "what", "when", "where", "name", "number", "how many", "first", "last", "award", "recipient"]
if any(kw in question.lower() for kw in search_keywords):
search_results = self.web_search(question)
if search_results and "ERROR" not in search_results:
file_context += f"\nHere are relevant web search results:\n{search_results}\n"
search_needed = True
# Step 3: Build LLM prompt
prompt = (
f"{self.instructions}\n\n"
f"{file_context}"
f"Question: {question}\n"
"Show your reasoning step by step, then provide the final answer as 'Final Answer: <answer>'."
)
llm_response = self.call_llm(prompt)
answer = self.parse_final_answer(llm_response)
# Step 4: Enforce strict output: only final answer, no extra lines
return answer