dawid-lorek's picture
Update app.py
f8e24f8 verified
raw
history blame
4.64 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_QUESTION_LENGTH = 4000 # to avoid GPT-4 8k token limit
# --- Agent Definition using smolagents ---
class SmartGAIAAgent:
def __init__(self):
self.api_key = os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("Missing OPENAI_API_KEY")
self.model = OpenAIServerModel(model_id="gpt-4", api_key=self.api_key)
# Agent with DuckDuckGo + built-in Python interpreter
self.agent = CodeAgent(
tools=[DuckDuckGoSearchTool()],
model=self.model,
add_base_tools=True
)
def __call__(self, question: str) -> str:
try:
question = question[:MAX_QUESTION_LENGTH]
result = self.agent.run(question)
return result.strip()
except Exception as e:
print(f"Agent error: {e}")
return "error"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = SmartGAIAAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Code link: {agent_code}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
answers_payload = []
results_log = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
# Skip invalid or long/multimodal questions
if not task_id or not question_text:
continue
if len(question_text) > MAX_QUESTION_LENGTH:
print(f"Skipping long question: {task_id}")
continue
if any(keyword in question_text.lower() for keyword in ['attached', '.mp3', '.wav', '.png', '.jpg', 'image']):
print(f"Skipping file/audio/image question: {task_id}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
return "No answers were submitted.", pd.DataFrame(results_log)
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\\n"
f"User: {result_data.get('username')}\\n"
f"Score: {result_data.get('score')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\\n"
f"Message: {result_data.get('message')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation")
gr.Markdown("""
**Instructions:**
1. Log in to Hugging Face
2. Click 'Run Evaluation' to generate and submit answers
3. Wait for the results
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Status", lines=5)
results_table = gr.DataFrame(label="Results")
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)