File size: 9,086 Bytes
d907fbb
f28347c
 
 
 
 
 
 
 
 
 
 
 
 
d907fbb
6e54bcf
 
710dda5
6e54bcf
710dda5
 
6e54bcf
d907fbb
c87ee3c
fef9fa7
 
 
c9650fa
 
fef9fa7
 
42dc5de
fef9fa7
 
 
2bfe4e1
fef9fa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11b50e
fef9fa7
f11b50e
14ae7b9
fef9fa7
c9650fa
 
 
 
fef9fa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4407ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef9fa7
 
c87ee3c
d907fbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("darkgrid",
			{"grid.color": ".6",
			"grid.linestyle": ":"})
import category_encoders as ce
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

# BiteBuddies AI/ML Stack
# Tinder-style Recommender System/Collaborative Filtering
# Testing: curl -X POST https://debisoft-junction.hf.space/api/predict -H 'Content-Type: application/json' -d '{"data": [<name>,<body_profile_type>]}
#  body_profile_type => [0-4]
# Eg. curl -X POST https://debisoft-junction.hf.space/api/predict -H 'Content-Type: application/json' -d '{"data": ["David",4]}
# Adapted from https://www.geeksforgeeks.org/predict-tinder-matches-with-machine-learning/
# TODO: Implement MBTI features

def predict_match(name, body_profile_type):
    user_df = {}

    # Get user input for numerical columns
    # TODO: Add more modifiable parameters

    user_df['age'] = 22.0
    user_df['status'] = 1.0
    user_df['sex'] = 0.0
    user_df['height'] = 60.0
    user_df['smokes'] = 1.0
    user_df['new_languages'] = 2.0
    user_df['body_profile'] = float(body_profile_type)
    user_df['education_level'] = 4.0
    user_df['dropped_out'] = 0.0
    user_df['bio'] = 'I am a foodie and traveller. But sometimes like to sit alone in a corner and read a good fiction.'
    user_df['location_preference'] = 2.0
    user_df['num_languages'] = 2.0
    user_df['drinks_encoded'] = 0.0
    user_df['drugs_encoded'] = 0.0
    # Get user input for one-hot encoded categorical columns
    user_df['location_new_york'] = 0.0
    user_df['location_northern_california'] = 1.0
    user_df['location_southern_california'] = 0.0
    user_df['job_encoded'] = 4.0
    user_df['pets_0'] = 1.0
    user_df['pets_1'] = 1.0
    user_df['pets_2'] = 1.0
    user_df['pets_3'] = 1.0

    # Convert tfidf matrix to DataFrame
    tfidf_df = pd.DataFrame(tfidf.transform([user_df['bio']]).toarray(), columns=feature_names)

    # Convert the user input
    # dictionary to a Pandas DataFrame
    user_df = pd.DataFrame(user_df, index=[0])
    user_df.drop("bio", axis=1, inplace=True)
    user_df = pd.concat([user_df, tfidf_df], axis=1)

    suggested_name = recommendOne(user_df)

    #return "Hello " + name + "!!" + " str2=" + str2
    return suggested_name

def greet_test(name, str2):
    return "Hello " + name + "!!" + " str2=" + str2

# Bootstrap the model
# reading dataset using panda
tinder_df = pd.read_csv("tinder_data.csv")

# count the number of languages in each row
tinder_df['num_languages'] = tinder_df['language']\
	.str.count(',') + 1
tinder_df.drop(["language"], axis=1, inplace=True)

place_type_strength = {
	'anywhere': 1.0,
	'same state': 2.0,
	'same city': 2.5
}

tinder_df['location_preference'] = \
	tinder_df['location_preference']\
	.apply(lambda x: place_type_strength[x])

two_unique_values_column = {
	'sex': {'f': 1, 'm': 0},
	'dropped_out': {'no': 0, 'yes': 1}
}

tinder_df.replace(two_unique_values_column,
				inplace=True)

status_type_strength = {
	'single': 2.0,
	'available': 2.0,
	'seeing someone': 1.0,
	'married': 1.0
}
tinder_df['status'] = tinder_df['status']\
	.apply(lambda x:
		status_type_strength[x])

# create a LabelEncoder object
orientation_encoder = LabelEncoder()

# fit the encoder on the orientation column
orientation_encoder.fit(tinder_df['orientation'])

# encode the orientation column using the fitted encoder
tinder_df['orientation'] = orientation_encoder.\
	transform(tinder_df['orientation'])

# Drop the existing orientation column
tinder_df.drop("orientation", axis=1, inplace=True)

drinking_habit = {
	'socially': 'sometimes',
	'rarely': 'sometimes',
	'not at all': 'do not drink',
	'often': 'drinks often',
	'very often': 'drinks often',
	'desperately': 'drinks often'
}
tinder_df['drinks'] = tinder_df['drinks']\
	.apply(lambda x:
		drinking_habit[x])
# create a LabelEncoder object
habit_encoder = LabelEncoder()

# fit the encoder on the drinks and drugs columns
habit_encoder.fit(tinder_df[['drinks', 'drugs']]
				.values.reshape(-1))

# encode the drinks and drugs columns
# using the fitted encoder
tinder_df['drinks_encoded'] = \
	habit_encoder.transform(tinder_df['drinks'])
tinder_df['drugs_encoded'] = \
	habit_encoder.transform(tinder_df['drugs'])

# Drop the existing drink and drugs column
tinder_df.drop(["drinks", "drugs"], axis=1,
			inplace=True)

region_dict = {'southern_california': ['los angeles',
						'san diego', 'hacienda heights',
						'north hollywood', 'phoenix'],
			'new_york': ['brooklyn',
							'new york']}

def get_region(city):
	for region, cities in region_dict.items():
		if city.lower() in [c.lower() for c in cities]:
			return region
	return "northern_california"


tinder_df['location'] = tinder_df['location']\
		.str.split(', ')\
		.str[0].apply(get_region)
# perform one hot encoding
location_encoder = OneHotEncoder()

# fit and transform the location column
location_encoded = location_encoder.fit_transform\
					(tinder_df[['location']])

# create a new DataFrame with the encoded columns
location_encoded_df = pd.DataFrame(location_encoded.toarray()\
						, columns=location_encoder.\
						get_feature_names_out(['location']))

# concatenate the new DataFrame with the original DataFrame
tinder_df = pd.concat([tinder_df, location_encoded_df], axis=1)
# Drop the existing location column
tinder_df.drop(["location"], axis=1, inplace=True)

# create a LabelEncoder object
job_encoder = LabelEncoder()

# fit the encoder on the job column
job_encoder.fit(tinder_df['job'])

# encode the job column using the fitted encoder
tinder_df['job_encoded'] = job_encoder.\
	transform(tinder_df['job'])

# drop the original job column
tinder_df.drop('job', axis=1, inplace=True)

smokes = {
'no': 1.0,
'sometimes': 0,
'yes': 0,
'when drinking':0,
'trying to quit':0
}
tinder_df['smokes'] = tinder_df['smokes']\
							.apply(lambda x: smokes[x])

bin_enc = ce.BinaryEncoder(cols=['pets'])

# fit and transform the pet column
pet_enc = bin_enc.fit_transform(tinder_df['pets'])

# add the encoded columns to the original dataframe
tinder_df = pd.concat([tinder_df, pet_enc], axis=1)

tinder_df.drop("pets",axis=1,inplace = True)

# create a LabelEncoder object
location_encoder = LabelEncoder()

# fit the encoder on the job column
location_encoder.fit(tinder_df['new_languages'])

# encode the job column using the fitted encoder
tinder_df['new_languages'] = location_encoder.transform(
	tinder_df['new_languages'])

# create an instance of LabelEncoder
le = LabelEncoder()

# encode the body_profile column
tinder_df["body_profile"] = le.fit_transform(tinder_df["body_profile"])

# Initialize TfidfVectorizer object
tfidf = TfidfVectorizer(stop_words='english')

# Fit and transform the text data
tfidf_matrix = tfidf.fit_transform(tinder_df['bio'])

# Get the feature names from the TfidfVectorizer object
feature_names = tfidf.vocabulary_

# Convert tfidf matrix to DataFrame
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(),
						columns=feature_names)

# Add non-text features to the tfidf_df dataframe
tinder_dfs = tinder_df.drop(["bio", "user_id",
							"username"], axis=1)
tinder_dfs = pd.concat([tinder_dfs,
						tfidf_df], axis=1)

# Apply SVD to the feature matrix
svd = TruncatedSVD(n_components=100)
#svd = TruncatedSVD()

svd_matrix = svd.fit_transform(tinder_dfs)



# Calculate the cosine similarity
# between all pairs of users
cosine_sim = cosine_similarity(svd_matrix)

def recommend(user_df, num_recommendations=5):

	# Apply SVD to the feature
	# matrix of the user_df dataframe
	svd_matrixs = svd.transform(user_df)

	# Calculate the cosine similarity
	# between the user_df and training set users
	cosine_sim_new = cosine_similarity(svd_matrixs, svd_matrix)

	# Get the indices of the top
	# num_recommendations similar users
	sim_scores = list(enumerate(cosine_sim_new[0]))
	sim_scores = sorted(sim_scores,
						key=lambda x: x[1], reverse=True)
	sim_indices = [i[0] for i in
				sim_scores[1:num_recommendations+1]]

	# Return the user_ids of the recommended users
	return tinder_df['username'].iloc[sim_indices]

def recommendOne(user_df, num_recommendations=1):

	# Apply SVD to the feature
	# matrix of the user_df dataframe
	svd_matrixs = svd.transform(user_df)

	# Calculate the cosine similarity
	# between the user_df and training set users
	cosine_sim_new = cosine_similarity(svd_matrixs, svd_matrix)

	# Get the indices of the top
	# num_recommendations similar users
	sim_scores = list(enumerate(cosine_sim_new[0]))
	sim_scores = sorted(sim_scores,
						key=lambda x: x[1], reverse=True)
	sim_indices = [i[0] for i in
				sim_scores[1:num_recommendations+1]]
	ser = tinder_df['username'].iloc[sim_indices]

	return pd.Series(ser[sim_indices[0]])[0]

# Setup complete!

iface = gr.Interface(fn=predict_match, inputs=["text", "text"], outputs="text")
iface.launch()