derek-thomas's picture
Update app.py
2beb7b1 verified
raw
history blame
9.93 kB
import gradio as gr
from transformers import AutoConfig # Required for Hugging Face integration
from calc_params import calc_params # Import calc_params from the new file
# ---- Helper Functions ---- #
def get_hf_model_args(hf_model_name_or_path):
try:
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
except Exception as e:
raise gr.Error(f"Error fetching Hugging Face model: {str(e)}")
# Extract relevant values from the config
num_layers = config.get("num_hidden_layers", None)
hidden_size = config.get("hidden_size", None)
num_attention_heads = config.get("num_attention_heads", None)
vocab_size = config.get("vocab_size", None)
sequence_length = config.get("max_position_embeddings", None)
return {
"num_layers": num_layers,
"hidden_size": hidden_size,
"num_attention_heads": num_attention_heads,
"vocab_size": vocab_size,
"sequence_length": sequence_length,
}
# ---- Update Gradio inputs with Hugging Face model config ---- #
def update_from_hf_model(hf_model_name_or_path):
model_params = get_hf_model_args(hf_model_name_or_path)
return (gr.update(value=model_params["num_layers"]),
gr.update(value=model_params["hidden_size"]),
gr.update(value=model_params["num_attention_heads"]),
gr.update(value=model_params["vocab_size"]),
gr.update(value=model_params["sequence_length"]),
"")
# ---- Memory Calculation ---- #
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
model_params = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else None
if model_params:
num_layers = model_params["num_layers"] or num_layers
hidden_size = model_params["hidden_size"] or hidden_size
num_attention_heads = model_params["num_attention_heads"] or num_attention_heads
vocab_size = model_params["vocab_size"] or vocab_size
sequence_length = model_params["sequence_length"] or sequence_length
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
embed_params = 2 * vocab_size * hidden_size
positional_params = hidden_size * sequence_length
ln_params = 8 * hidden_size * num_layers + (2 * hidden_size)
attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size)
mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
bytes_per_param = 2 if is_mixed_precision else 4
model_mem = total_params * bytes_per_param
per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
# ---- Gradio Interface ---- #
with gr.Blocks() as demo:
with gr.Tabs():
# Memory Calculation Tab
with gr.TabItem("Memory Calculation"):
hf_model_name_or_path = gr.Textbox(
label="HuggingFace Model Name or Path",
info="Name of the HuggingFace Hub repository or the local file path for it"
)
num_gpus = gr.Number(
label="Number of GPUs",
value=1,
info="Number of GPUs used for training"
)
tensor_parallel_size = gr.Number(
label="Tensor Parallel Size",
value=1,
info="Tensor parallel degree (1 if not used)"
)
pipeline_parallel_size = gr.Number(
label="Pipeline Parallel Size",
value=1,
info="Pipeline parallel degree (1 if not used)"
)
batch_size_per_gpu = gr.Number(
label="Batch Size per GPU",
value=8,
info="Batch size per GPU"
)
sequence_length = gr.Number(
label="Sequence Length",
value=2048,
info="Sequence length used for training"
)
vocab_size = gr.Number(
label="Vocab Size",
value=51200,
info="How many tokens are in the embedding layer"
)
hidden_size = gr.Number(
label="Hidden Size",
value=6144,
info="Dimension of the model's hidden size"
)
num_attention_heads = gr.Number(
label="Number of Attention Heads",
value=64,
info="Number of attention heads used in the model"
)
num_layers = gr.Number(
label="Number of Layers",
value=44,
info="Number of transformer layers used in the model"
)
ffn_expansion_factor = gr.Number(
label="FFN Expansion Factor",
value=4,
info="How much the MLP hidden size expands"
)
is_mixed_precision = gr.Checkbox(
label="Mixed Precision",
value=True,
info="Whether mixed precision is enabled"
)
misc_mem_gib = gr.Number(
label="Miscellaneous Memory Overhead (GiB)",
value=5,
info="Miscellaneous memory overhead per GPU by DL frameworks, communication libraries, etc."
)
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
calc_memory_button = gr.Button("Calculate Memory")
calc_memory_button.click(
calc_mem,
inputs=[
hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib
],
outputs=memory_result
)
hf_model_name_or_path.change(
fn=update_from_hf_model,
inputs=[hf_model_name_or_path],
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]
)
# Parameter Calculation Tab
with gr.TabItem("Parameter Calculation"):
hf_model_name_or_path = gr.Textbox(
label="HuggingFace Model Name or Path",
info="Name of the HuggingFace Hub repository or the local file path for it"
)
vocab_size = gr.Number(
label="Vocab Size",
value=51200,
info="How many tokens are in the embedding layer"
)
tied_embeddings = gr.Checkbox(
label="Tied Embeddings",
value=False,
info="Whether embeddings are tied (shared between input and output)"
)
hidden_size = gr.Number(
label="Hidden Size",
value=6144,
info="Dimension of the model's hidden size"
)
sequence_length = gr.Number(
label="Sequence Length",
value=2048,
info="Sequence length used for training"
)
num_layers = gr.Number(
label="Number of Layers",
value=44,
info="Number of transformer layers used in the model"
)
ffn_expansion_factor = gr.Number(
label="FFN Expansion Factor",
value=4,
info="How much the MLP hidden size expands"
)
num_mlp_linears = gr.Number(
label="Number of Linear Layers per MLP Block",
value=2,
info="How many linear layers per MLP block"
)
kv_size_ratio = gr.Number(
label="KV Size Ratio",
value=1.0,
info="Ratio of total query heads to key/value heads. 1.0 for MHA, 1/num_attention_heads for MQA"
)
with gr.Accordion("MoE Parameters", open=False):
moe = gr.Checkbox(
label="MoE",
value=False,
info="Whether the model is MoE"
)
num_experts = gr.Number(
label="Number of Experts",
value=8,
info="Number of experts for MoE"
)
expert_interval = gr.Number(
label="Expert Interval",
value=1,
info="Expert interval for MoE"
)
topk = gr.Number(
label="Top k Routing",
value=1,
info="Top k routing for MoE"
)
param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
calc_param_button = gr.Button("Calculate Parameters")
calc_param_button.click(calc_params,
inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
outputs=param_result)
hf_model_name_or_path.change(fn=update_from_hf_model,
inputs=[hf_model_name_or_path],
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length])
demo.launch()