File size: 47,230 Bytes
f639c56
dc2d325
24f29f0
f639c56
 
1fe11cb
 
 
 
f639c56
1fe11cb
 
 
 
241f37e
 
 
 
f639c56
241f37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639c56
713a6e6
 
 
683b6ad
f639c56
d89427c
 
713a6e6
 
d89427c
713a6e6
d89427c
332a246
 
d89427c
 
 
 
332a246
713a6e6
7b28785
683b6ad
55ff70d
683b6ad
d89427c
 
 
 
683b6ad
d89427c
332a246
d89427c
332a246
d89427c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa13896
7b28785
d89427c
 
 
 
241f37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332a246
683b6ad
d89427c
332a246
6aebc39
332a246
d89427c
 
683b6ad
713a6e6
 
 
332a246
 
713a6e6
 
 
7b28785
713a6e6
 
683b6ad
 
713a6e6
 
 
332a246
 
713a6e6
 
 
7b28785
713a6e6
 
683b6ad
 
713a6e6
 
 
f639c56
713a6e6
 
f639c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c22eca1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
import os
import sys
import re
import gradio as gr
import json
import tempfile
import base64
import io
from typing import List, Dict, Any, Optional, Tuple, Union
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
try:
    from sqlalchemy import text as sa_text
except Exception:
    sa_text = None

try:
    # Intentar importar dependencias opcionales
    from langchain_community.agent_toolkits import create_sql_agent
    from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
    from langchain_community.utilities import SQLDatabase
    from langchain_google_genai import ChatGoogleGenerativeAI
    from langchain.agents.agent_types import AgentType
    from langchain.memory import ConversationBufferWindowMemory
    from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
    import pymysql
    from dotenv import load_dotenv
    
    DEPENDENCIES_AVAILABLE = True
except ImportError as e:
    logger.warning(f"Some dependencies are not available: {e}")
    DEPENDENCIES_AVAILABLE = False

# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configure logging
logging.basicConfig(level=logging.INFO)

def generate_chart(data: Union[Dict, List[Dict], pd.DataFrame], 
                 chart_type: str, 
                 x: str, 
                 y: str = None, 
                 title: str = "", 
                 x_label: str = None, 
                 y_label: str = None):
    """
    Generate an interactive Plotly figure from data.
    
    Args:
        data: The data to plot (can be a list of dicts or a pandas DataFrame)
        chart_type: Type of chart to generate (bar, line, pie, scatter, histogram)
        x: Column name for x-axis (names for pie)
        y: Column name for y-axis (values for pie)
        title: Chart title
        x_label: Label for x-axis
        y_label: Label for y-axis
        
    Returns:
        A Plotly Figure object (interactive) or None on error
    """
    try:
        # Convert data to DataFrame if it's a list of dicts
        if isinstance(data, list):
            df = pd.DataFrame(data)
        elif isinstance(data, dict):
            df = pd.DataFrame([data])
        else:
            df = data
            
        if not isinstance(df, pd.DataFrame):
            return None
            
        # Generate the appropriate chart type
        fig = None
        if chart_type == 'bar':
            fig = px.bar(df, x=x, y=y, title=title)
        elif chart_type == 'line':
            fig = px.line(df, x=x, y=y, title=title)
        elif chart_type == 'pie':
            fig = px.pie(df, names=x, values=y, title=title, hole=0)
        elif chart_type == 'scatter':
            fig = px.scatter(df, x=x, y=y, title=title)
        elif chart_type == 'histogram':
            fig = px.histogram(df, x=x, title=title)
        else:
            return None
        
        # Update layout
        fig.update_layout(
            xaxis_title=x_label or x,
            yaxis_title=y_label or (y if y != x else ''),
            title=title or f"{chart_type.capitalize()} Chart of {x} vs {y}" if y else f"{chart_type.capitalize()} Chart of {x}",
            template="plotly_white",
            margin=dict(l=20, r=20, t=40, b=20),
            height=400
        )
        
        return fig
        
    except Exception as e:
        error_msg = f"Error generating chart: {str(e)}"
        logger.error(error_msg, exc_info=True)
        return None

logger = logging.getLogger(__name__)

def check_environment():
    """Verifica si el entorno está configurado correctamente."""
    if not DEPENDENCIES_AVAILABLE:
        return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
    
    # Verificar si estamos en un entorno con variables de entorno
    required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
    missing_vars = [var for var in required_vars if not os.getenv(var)]
    
    if missing_vars:
        return False, f"Missing required environment variables: {', '.join(missing_vars)}"
    
    return True, "Environment is properly configured"

def setup_database_connection():
    """Intenta establecer una conexión a la base de datos."""
    if not DEPENDENCIES_AVAILABLE:
        return None, "Dependencies not available"
        
    try:
        load_dotenv(override=True)
        
        # Debug: Log all environment variables (without sensitive values)
        logger.info("Environment variables:")
        for key, value in os.environ.items():
            if any(s in key.lower() for s in ['pass', 'key', 'secret']):
                logger.info(f"  {key}: {'*' * 8} (hidden for security)")
            else:
                logger.info(f"  {key}: {value}")
        
        db_user = os.getenv("DB_USER")
        db_password = os.getenv("DB_PASSWORD")
        db_host = os.getenv("DB_HOST")
        db_name = os.getenv("DB_NAME")
        
        # Debug: Log database connection info (without password)
        logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
        if not all([db_user, db_password, db_host, db_name]):
            missing = [var for var, val in [
                ("DB_USER", db_user),
                ("DB_PASSWORD", "*" if db_password else ""),
                ("DB_HOST", db_host),
                ("DB_NAME", db_name)
            ] if not val]
            logger.error(f"Missing required database configuration: {', '.join(missing)}")
            return None, f"Missing database configuration: {', '.join(missing)}"
        
        if not all([db_user, db_password, db_host, db_name]):
            return None, "Missing database configuration"
            
        logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
        
        # Probar conexión
        connection = pymysql.connect(
            host=db_host,
            user=db_user,
            password=db_password,
            database=db_name,
            connect_timeout=5,
            cursorclass=pymysql.cursors.DictCursor
        )
        connection.close()
        
        # Si la conexión es exitosa, crear motor SQLAlchemy
        db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
        logger.info("Database connection successful")
        return SQLDatabase.from_uri(db_uri), ""
        
    except Exception as e:
        error_msg = f"Error connecting to database: {str(e)}"
        logger.error(error_msg)
        return None, error_msg

def initialize_llm():
    """Inicializa el modelo de lenguaje."""
    if not DEPENDENCIES_AVAILABLE:
        error_msg = "Dependencies not available. Make sure all required packages are installed."
        logger.error(error_msg)
        return None, error_msg
        
    google_api_key = os.getenv("GOOGLE_API_KEY")
    logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
    
    if not google_api_key:
        error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
        logger.error(error_msg)
        return None, error_msg
        
    try:
        logger.info("Initializing Google Generative AI...")
        llm = ChatGoogleGenerativeAI(
            model="gemini-2.0-flash",
            temperature=0,
            google_api_key=google_api_key,
            convert_system_message_to_human=True  # Convert system messages to human messages
        )
        
        # Test the model with a simple prompt
        test_prompt = "Hello, this is a test."
        logger.info(f"Testing model with prompt: {test_prompt}")
        test_response = llm.invoke(test_prompt)
        logger.info(f"Model test response: {str(test_response)[:100]}...")  # Log first 100 chars
        
        logger.info("Google Generative AI initialized successfully")
        return llm, ""
        
    except Exception as e:
        error_msg = f"Error initializing Google Generative AI: {str(e)}"
        logger.error(error_msg, exc_info=True)  # Include full stack trace
        return None, error_msg

def create_agent():
    """Crea el agente SQL si es posible."""
    if not DEPENDENCIES_AVAILABLE:
        error_msg = "Dependencies not available. Please check if all required packages are installed."
        logger.error(error_msg)
        return None, error_msg
    
    logger.info("Starting agent creation process...")
    
def create_agent(llm, db_connection):
    """Create and return a SQL database agent with conversation memory."""
    if not llm:
        error_msg = "Cannot create agent: LLM is not available"
        logger.error(error_msg)
        return None, error_msg
    
    if not db_connection:
        error_msg = "Cannot create agent: Database connection is not available"
        logger.error(error_msg)
        return None, error_msg
        
    try:
        logger.info("Creating SQL agent with memory...")
        
        # Create conversation memory
        memory = ConversationBufferWindowMemory(
            memory_key="chat_history",
            k=5,  # Keep last 5 message exchanges in memory
            return_messages=True,
            output_key="output"
        )
        
        # Create the database toolkit with additional configuration
        toolkit = SQLDatabaseToolkit(
            db=db_connection,
            llm=llm
        )
        
        # Create the agent with memory and more detailed configuration
        agent = create_sql_agent(
            llm=llm,
            toolkit=toolkit,
            agent_type=AgentType.OPENAI_FUNCTIONS,
            verbose=True,
            handle_parsing_errors=True,  # Better error handling for parsing
            max_iterations=10,  # Limit the number of iterations
            early_stopping_method="generate",  # Stop early if the agent is stuck
            memory=memory,  # Add memory to the agent
            return_intermediate_steps=True  # Important for memory to work properly
        )
        
        # Test the agent with a simple query
        logger.info("Testing agent with a simple query...")
        try:
            test_query = "SELECT 1"
            test_result = agent.run(test_query)
            logger.info(f"Agent test query successful: {str(test_result)[:200]}...")
        except Exception as e:
            logger.warning(f"Agent test query failed (this might be expected): {str(e)}")
            # Continue even if test fails, as it might be due to model limitations
        
        logger.info("SQL agent created successfully")
        return agent, ""
        
    except Exception as e:
        error_msg = f"Error creating SQL agent: {str(e)}"
        logger.error(error_msg, exc_info=True)
        return None, error_msg

# Inicializar el agente
logger.info("="*50)
logger.info("Starting application initialization...")
logger.info(f"Python version: {sys.version}")
logger.info(f"Current working directory: {os.getcwd()}")
logger.info(f"Files in working directory: {os.listdir()}")

# Verificar las variables de entorno
logger.info("Checking environment variables...")
for var in ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]:
    logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")

# Initialize components
logger.info("Initializing database connection...")
db_connection, db_error = setup_database_connection()
if db_error:
    logger.error(f"Failed to initialize database: {db_error}")

logger.info("Initializing language model...")
llm, llm_error = initialize_llm()
if llm_error:
    logger.error(f"Failed to initialize language model: {llm_error}")

logger.info("Initializing agent...")
agent, agent_error = create_agent(llm, db_connection)
db_connected = agent is not None

if agent:
    logger.info("Agent initialized successfully")
else:
    logger.error(f"Failed to initialize agent: {agent_error}")

logger.info("="*50)

def looks_like_sql(s: str) -> bool:
    """Heuristic to check if a string looks like an executable SQL statement."""
    if not s:
        return False
    s_strip = s.strip().lstrip("-- ")
    # common starters
    return bool(re.match(r"^(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)\b", s_strip, re.IGNORECASE))


def extract_sql_query(text):
    """Extrae consultas SQL del texto. Acepta solo bloques etiquetados como ```sql
    o cadenas que claramente parezcan SQL. Evita ejecutar texto genérico.
    """
    if not text:
        return None

    # Buscar TODOS los bloques en backticks y elegir los que sean 'sql'
    for m in re.finditer(r"```(\w+)?\s*(.*?)```", text, re.DOTALL | re.IGNORECASE):
        lang = (m.group(1) or '').lower()
        body = (m.group(2) or '').strip()
        if lang in {"sql", "postgresql", "mysql"} and looks_like_sql(body):
            return body

    # Si no hay bloques etiquetados, buscar una consulta SQL simple con palabras clave
    simple = re.search(r"(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)[\s\S]*?;", text, re.IGNORECASE)
    if simple:
        candidate = simple.group(0).strip()
        if looks_like_sql(candidate):
            return candidate

    return None

def execute_sql_query(query, db_connection):
    """Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
    if not db_connection:
        return "Error: No hay conexión a la base de datos"
        
    try:
        with db_connection._engine.connect() as connection:
            # Ensure SQLAlchemy receives a SQL expression
            if sa_text is not None and isinstance(query, str):
                result = connection.execute(sa_text(query))
            else:
                result = connection.execute(query)

            # Fetch data and column names
            columns = list(result.keys()) if hasattr(result, "keys") else []
            rows = result.fetchall()

            # Convertir los resultados a un formato legible
            if not rows:
                return "La consulta no devolvió resultados"

            # Si es un solo resultado, devolverlo directamente
            try:
                if len(rows) == 1 and len(rows[0]) == 1:
                    return str(rows[0][0])
            except Exception:
                pass

            # Si hay múltiples filas, formatear como tabla Markdown
            try:
                import pandas as pd

                # Convert SQLAlchemy Row objects to list of dicts using column names
                if columns:
                    data = [
                        {col: val for col, val in zip(columns, tuple(row))}
                        for row in rows
                    ]
                    df = pd.DataFrame(data)
                else:
                    # Fallback: let pandas infer columns
                    df = pd.DataFrame(rows)

                # Prefer Markdown output for downstream chart parsing
                try:
                    return df.to_markdown(index=False)
                except Exception:
                    # If optional dependency 'tabulate' is missing, build a simple Markdown table
                    headers = list(map(str, df.columns))
                    header_line = "| " + " | ".join(headers) + " |"
                    sep_line = "| " + " | ".join(["---"] * len(headers)) + " |"
                    body_lines = []
                    for _, r in df.iterrows():
                        body_lines.append("| " + " | ".join(map(lambda v: str(v), r.values)) + " |")
                    return "\n".join([header_line, sep_line, *body_lines])
            except ImportError:
                # Si pandas no está disponible, usar formato simple
                return "\n".join([str(row) for row in rows])

    except Exception as e:
        return f"Error ejecutando la consulta: {str(e)}"

def detect_chart_preferences(question: str) -> Tuple[bool, str]:
    """Detect whether the user is asking for a chart and infer desired type.

    Returns (wants_chart, chart_type) where chart_type is one of
    {'bar', 'pie', 'line', 'scatter', 'histogram'}.
    Defaults to 'bar' when ambiguous.
    """
    try:
        q = (question or "").lower()

        # Broad triggers indicating any chart request
        chart_triggers = [
            "grafico", "gráfico", "grafica", "gráfica", "chart", "graph",
            "visualizacion", "visualización", "plot", "plotly", "diagrama"
        ]
        wants_chart = any(k in q for k in chart_triggers)

        # Specific type hints
        if any(k in q for k in ["pastel", "pie", "circular", "donut", "dona", "anillo"]):
            return wants_chart or True, "pie"
        if any(k in q for k in ["linea", "línea", "line", "tendencia"]):
            return wants_chart or True, "line"
        if any(k in q for k in ["dispersión", "dispersion", "scatter", "puntos"]):
            return wants_chart or True, "scatter"
        if any(k in q for k in ["histograma", "histogram"]):
            return wants_chart or True, "histogram"
        if any(k in q for k in ["barra", "barras", "columnas", "column"]):
            return wants_chart or True, "bar"

        # Default
        return wants_chart, "bar"
    except Exception:
        return False, "bar"

def generate_plot(data, x_col, y_col, title, x_label, y_label):
    """Generate a plot from data and return the file path."""
    plt.figure(figsize=(10, 6))
    plt.bar(data[x_col], data[y_col])
    plt.title(title)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    # Save to a temporary file
    temp_dir = tempfile.mkdtemp()
    plot_path = os.path.join(temp_dir, "plot.png")
    plt.savefig(plot_path)
    plt.close()
    
    return plot_path

def convert_to_messages_format(chat_history):
    """Convert chat history to the format expected by Gradio 5.x"""
    if not chat_history:
        return []
        
    messages = []
    
    # If the first element is a list, assume it's in the old format
    if isinstance(chat_history[0], list):
        for msg in chat_history:
            if isinstance(msg, list) and len(msg) == 2:
                # Format: [user_msg, bot_msg]
                user_msg, bot_msg = msg
                if user_msg:
                    messages.append({"role": "user", "content": user_msg})
                if bot_msg:
                    messages.append({"role": "assistant", "content": bot_msg})
    else:
        # Assume it's already in the correct format or can be used as is
        for msg in chat_history:
            if isinstance(msg, dict) and "role" in msg and "content" in msg:
                messages.append(msg)
            elif isinstance(msg, str):
                # If it's a string, assume it's a user message
                messages.append({"role": "user", "content": msg})
    
    return messages

async def stream_agent_response(question: str, chat_history: List[List[str]]) -> Tuple[str, Optional["go.Figure"]]:
    """Procesa la pregunta del usuario y devuelve la respuesta del agente con memoria de conversación."""
    global agent  # Make sure we can modify the agent's memory
    
    # Initialize response
    response_text = ""
    chart_fig = None
    messages = []
    
    # Add previous chat history in the correct format for the agent
    for msg_pair in chat_history:
        if len(msg_pair) >= 1 and msg_pair[0]:  # User message
            messages.append(HumanMessage(content=msg_pair[0]))
        if len(msg_pair) >= 2 and msg_pair[1]:  # Assistant message
            messages.append(AIMessage(content=msg_pair[1]))
    
    # Add current user's question
    user_message = HumanMessage(content=question)
    messages.append(user_message)
    
    if not agent:
        error_msg = (
            "## ⚠️ Error: Agente no inicializado\n\n"
            "No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
            "1. Todas las variables de entorno estén configuradas correctamente\n"
            "2. La base de datos esté accesible\n"
            f"3. El modelo de lenguaje esté disponible\n\n"
            f"Error: {agent_error}"
        )
        return error_msg, None
        
    # Update the agent's memory with the full conversation history
    try:
        # Rebuild agent memory from chat history pairs
        if hasattr(agent, 'memory') and agent.memory is not None:
            agent.memory.clear()
            for i in range(0, len(messages)-1, 2):  # (user, assistant)
                if i+1 < len(messages):
                    agent.memory.save_context(
                        {"input": messages[i].content},
                        {"output": messages[i+1].content}
                    )
    except Exception as e:
        logger.error(f"Error updating agent memory: {str(e)}", exc_info=True)
    
    try:
        # Add empty assistant message that will be updated
        assistant_message = {"role": "assistant", "content": ""}
        messages.append(assistant_message)
        
        # Execute the agent with proper error handling
        try:
            # Let the agent use its memory; don't pass raw chat_history
            response = await agent.ainvoke({"input": question})
            logger.info(f"Agent response type: {type(response)}")
            logger.info(f"Agent response content: {str(response)[:500]}...")
            
            # Handle different response formats
            if hasattr(response, 'output') and response.output:
                response_text = response.output
            elif isinstance(response, str):
                response_text = response
            elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
                response_text = response['output']
            else:
                response_text = str(response)
            
            # logger.info(f"Extracted response text: {response_text[:200]}...")
            
            # # Check if the response contains an SQL query and it truly looks like SQL
            # sql_query = extract_sql_query(response_text)
            # if sql_query and looks_like_sql(sql_query):
            #     logger.info(f"Detected SQL query: {sql_query}")
            #     # Execute the query and update the response
            #     db_connection, _ = setup_database_connection()
            #     if db_connection:
            #         query_result = execute_sql_query(sql_query, db_connection)
                    
            #         # Add the query and its result to the response
            #         response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
                    
            #         # Try to generate an interactive chart if the result is tabular
            #         try:
            #             if isinstance(query_result, str) and '|' in query_result and '---' in query_result:
            #                 # Convert markdown table to DataFrame
                            
            #                 # Clean up the markdown table
            #                 lines = [line.strip() for line in query_result.split('\n') 
            #                         if line.strip() and '---' not in line and '|' in line]
            #                 if len(lines) > 1:  # At least header + 1 data row
            #                     # Get column names from the first line
            #                     columns = [col.strip() for col in lines[0].split('|')[1:-1]]
            #                     # Get data rows
            #                     data = []
            #                     for line in lines[1:]:
            #                         values = [val.strip() for val in line.split('|')[1:-1]]
            #                         if len(values) == len(columns):
            #                             data.append(dict(zip(columns, values)))
                                
            #                     if data and len(columns) >= 2:
            #                         # Determine chart type from user's question
            #                         _, desired_type = detect_chart_preferences(question)

            #                         # Choose x/y columns (assume first is category, second numeric)
            #                         x_col = columns[0]
            #                         y_col = columns[1]

            #                         # Coerce numeric values for y
            #                         for row in data:
            #                             try:
            #                                 row[y_col] = float(re.sub(r"[^0-9.\-]", "", str(row[y_col])))
            #                             except Exception:
            #                                 pass

            #                         chart_fig = generate_chart(
            #                             data=data,
            #                             chart_type=desired_type,
            #                             x=x_col,
            #                             y=y_col,
            #                             title=f"{y_col} por {x_col}"
            #                         )
            #                         if chart_fig is not None:
            #                             logger.info(f"Chart generated from SQL table: type={desired_type}, x={x_col}, y={y_col}, rows={len(data)}")
            #         except Exception as e:
            #             logger.error(f"Error generating chart: {str(e)}", exc_info=True)
            #             # Don't fail the whole request if chart generation fails
            #             response_text += "\n\n⚠️ No se pudo generar la visualización de los datos."
            #     else:
            #         response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
            # elif sql_query and not looks_like_sql(sql_query):
            #     logger.info("Detected code block but it does not look like SQL; skipping execution.")

            # If we still have no chart but the user clearly wants one,
            # try a second pass to get ONLY a SQL query from the agent and execute it.
            if chart_fig is None:
                wants_chart, default_type = detect_chart_preferences(question)
                if wants_chart:
                    try:
                        logger.info("Second pass: asking agent for ONLY SQL query in fenced block.")
                        sql_only_prompt = (
                            "Devuelve SOLO la consulta SQL en un bloque ```sql``` para responder a: "
                            f"{question}. No incluyas explicación ni texto adicional."
                        )
                        sql_only_resp = await agent.ainvoke({"input": sql_only_prompt})
                        sql_only_text = str(sql_only_resp)
                        sql_query2 = extract_sql_query(sql_only_text)
                        if sql_query2 and looks_like_sql(sql_query2):
                            logger.info(f"Second pass SQL detected: {sql_query2}")
                            db_connection, _ = setup_database_connection()
                            if db_connection:
                                query_result = execute_sql_query(sql_query2, db_connection)
                                # Try to parse table-like text into DataFrame if possible
                                data = None
                                if isinstance(query_result, str):
                                    try:
                                        import pandas as pd
                                        df = pd.read_csv(io.StringIO(query_result), sep="|")
                                        data = df
                                    except Exception:
                                        pass
                                # As a fallback, don't rely on text table; just skip charting here
                                if data is not None and hasattr(data, "empty") and not data.empty:
                                    # Heuristics: choose first column as x and second as y if numeric
                                    x_col = data.columns[0]
                                    # pick first numeric column different to x
                                    y_col = None
                                    for col in data.columns[1:]:
                                        try:
                                            pd.to_numeric(data[col])
                                            y_col = col
                                            break
                                        except Exception:
                                            continue
                                    if y_col:
                                        desired_type = default_type
                                        chart_fig = generate_chart(
                                            data=data,
                                            chart_type=desired_type,
                                            x=x_col,
                                            y=y_col,
                                            title=f"{y_col} por {x_col}"
                                        )
                                        if chart_fig is not None:
                                            logger.info("Chart generated from second-pass SQL execution.")
                            else:
                                logger.info("No DB connection on second pass; skipping.")
                    except Exception as e:
                        logger.error(f"Second-pass SQL synthesis failed: {e}")
            
            # Fallback: if user asked for a chart and we didn't get SQL or chart yet,
            # parse the most recent assistant text for lines like "LABEL: NUMBER" (bulleted or plain).
            if chart_fig is None:
                wants_chart, desired_type = detect_chart_preferences(question)
                if wants_chart:
                    # Find the most recent assistant message with usable numeric pairs
                    candidate_text = ""
                    if chat_history:
                        for pair in reversed(chat_history):
                            if len(pair) >= 2 and isinstance(pair[1], str) and pair[1].strip():
                                candidate_text = pair[1]
                                break
                    # Also consider current response_text as a data source
                    if not candidate_text and isinstance(response_text, str) and response_text.strip():
                        candidate_text = response_text
                    if candidate_text:
                        raw_lines = candidate_text.split('\n')
                        # Normalize lines: strip bullets and markdown symbols
                        norm_lines = []
                        for l in raw_lines:
                            s = l.strip()
                            if not s:
                                continue
                            s = s.lstrip("•*-\t ")
                            # Remove surrounding markdown emphasis from labels later
                            norm_lines.append(s)
                        data = []
                        for l in norm_lines:
                            # Accept patterns like "**LABEL**: 123" or "LABEL: 1,234"
                            m = re.match(r"^(.+?):\s*([0-9][0-9.,]*)$", l)
                            if m:
                                label = m.group(1).strip()
                                # Strip common markdown emphasis
                                label = re.sub(r"[*_`]+", "", label).strip()
                                try:
                                    val = float(m.group(2).replace(',', ''))
                                except Exception:
                                    continue
                                data.append({"label": label, "value": val})
                        logger.info(f"Fallback parse from text: extracted {len(data)} items for potential chart")
                        if len(data) >= 2:
                            chart_fig = generate_chart(
                                data=data,
                                chart_type=desired_type,
                                x="label",
                                y="value",
                                title="Distribución"
                            )
                            if chart_fig is not None:
                                logger.info(f"Chart generated from text fallback: type={desired_type}, items={len(data)}")
            
            # Update the assistant's message with the response
            assistant_message["content"] = response_text
            
        except Exception as e:
            error_msg = f"Error al ejecutar el agente: {str(e)}"
            logger.error(error_msg, exc_info=True)
            assistant_message["content"] = f"## ❌ Error\n\n{error_msg}"
        
        # Return the message in the correct format for Gradio Chatbot
        # Format: list of tuples where each tuple is (user_msg, bot_msg)
        # For a single response, we return [(None, message)]
        message_content = ""
        
        if isinstance(assistant_message, dict) and "content" in assistant_message:
            message_content = assistant_message["content"]
        elif isinstance(assistant_message, str):
            message_content = assistant_message
        else:
            message_content = str(assistant_message)
            
        # Return the assistant's response and an optional interactive chart figure
        if chart_fig is None:
            logger.info("No chart generated for this turn.")
        else:
            logger.info("Returning a chart figure to UI.")
        return message_content, chart_fig
        
    except Exception as e:
        error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
        logger.error(f"Error in stream_agent_response: {str(e)}", exc_info=True)
        # Return error message and no chart
        return error_msg, None

# Custom CSS for the app
custom_css = """
.gradio-container {
    max-width: 1200px !important;
    margin: 0 auto !important;
    font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
}

#chatbot {
    min-height: 500px;
    border: 1px solid #e0e0e0;
    border-radius: 8px;
    margin-bottom: 20px;
    padding: 20px;
    background-color: #f9f9f9;
}

.user-message, .bot-message {
    padding: 12px 16px;
    border-radius: 18px;
    margin: 8px 0;
    max-width: 80%;
    line-height: 1.5;
}

.user-message {
    background-color: #007bff;
    color: white;
    margin-left: auto;
    border-bottom-right-radius: 4px;
}

.bot-message {
    background-color: #f1f1f1;
    color: #333;
    margin-right: auto;
    border-bottom-left-radius: 4px;
}

#question-input textarea {
    min-height: 50px !important;
    border-radius: 8px !important;
    padding: 12px !important;
    font-size: 16px !important;
}

#send-button {
    height: 100%;
    background-color: #007bff !important;
    color: white !important;
    border: none !important;
    border-radius: 8px !important;
    font-weight: 500 !important;
    transition: background-color 0.2s !important;
}

#send-button:hover {
    background-color: #0056b3 !important;
}

.status-message {
    text-align: center;
    color: #666;
    font-style: italic;
    margin: 10px 0;
}
"""

def create_ui():
    """Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
    # Verificar el estado del entorno
    env_ok, env_message = check_environment()
    
    # Crear el tema personalizado
    theme = gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="indigo",
        neutral_hue="slate"
    )
    
    with gr.Blocks(
        css=custom_css,
        title="Asistente de Base de Datos SQL",
        theme=theme
    ) as demo:
        # Encabezado
        gr.Markdown("""
        # 🤖 Asistente de Base de Datos SQL
        
        Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
        """)
        
        # Mensaje de estado
        if not env_ok:
            gr.Warning("⚠️ " + env_message)
        
        # Create the chat interface
        with gr.Row():
            chatbot = gr.Chatbot(
                value=[],
                elem_id="chatbot",
                type="messages",  # migrate to messages format to avoid deprecation
                avatar_images=(
                    None,
                    (os.path.join(os.path.dirname(__file__), "logo.svg")),
                ),
                height=600,
                render_markdown=True,  # Enable markdown rendering
                show_label=False,
                show_share_button=False,
                container=True,
                layout="panel"  # Better layout for messages
            )
        
        # Chart display area (interactive Plotly figure)
        # In Gradio 5, gr.Plot accepts a plotly.graph_objects.Figure
        chart_display = gr.Plot(
            label="📊 Visualización",
        )
        
        # Input area
        with gr.Row():
            question_input = gr.Textbox(
                label="",
                placeholder="Escribe tu pregunta aquí...",
                container=False,
                scale=5,
                min_width=300,
                max_lines=3,
                autofocus=True,
                elem_id="question-input"
            )
            submit_button = gr.Button(
                "Enviar",
                variant="primary",
                min_width=100,
                scale=1,
                elem_id="send-button"
            )
        
        # System status
        with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
            if not DEPENDENCIES_AVAILABLE:
                gr.Markdown("""
                ## ❌ Dependencias faltantes
                
                Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
                
                ```bash
                pip install -r requirements.txt
                ```
                """)
            else:
                if not agent:
                    gr.Markdown(f"""
                    ## ⚠️ Configuración incompleta
                    
                    No se pudo inicializar el agente de base de datos. Por favor, verifica que:
                    
                    1. Todas las variables de entorno estén configuradas correctamente
                    2. La base de datos esté accesible
                    3. La API de Google Gemini esté configurada
                    
                    **Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
                    
                    ### Configuración local
                    
                    Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
                    
                    ```
                    DB_USER=tu_usuario
                    DB_PASSWORD=tu_contraseña
                    DB_HOST=tu_servidor
                    DB_NAME=tu_base_de_datos
                    GOOGLE_API_KEY=tu_api_key_de_google
                    ```
                    """)
                else:
                    if os.getenv('SPACE_ID'):
                        # Modo demo en Hugging Face Spaces
                        gr.Markdown("""
                        ## 🚀 Modo Demo
                        
                        Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
                        
                        1. Clona este espacio en tu cuenta de Hugging Face
                        2. Configura las variables de entorno en la configuración del espacio:
                           - `DB_USER`: Tu usuario de base de datos
                           - `DB_PASSWORD`: Tu contraseña de base de datos
                           - `DB_HOST`: La dirección del servidor de base de datos
                           - `DB_NAME`: El nombre de la base de datos
                           - `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
                        
                        **Nota:** Actualmente estás en modo de solo demostración.
                        """)
                    else:
                        gr.Markdown("""
                        ## ✅ Sistema listo
                        
                        El asistente está listo para responder tus preguntas sobre la base de datos.
                        """)
        
        # Hidden component for streaming output
        streaming_output_display = gr.Textbox(visible=False)
        
        return demo, chatbot, chart_display, question_input, submit_button, streaming_output_display

def create_application():
    """Create and configure the Gradio application."""
    # Create the UI components
    demo, chatbot, chart_display, question_input, submit_button, streaming_output_display = create_ui()
    
    def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
        """Add user message to chat history (messages format) and clear input."""
        if not user_input.strip():
            return "", chat_history

        logger.info(f"User message: {user_input}")

        if chat_history is None:
            chat_history = []

        # Append user message in messages format
        chat_history.append({"role": "user", "content": user_input})

        return "", chat_history
    
    async def bot_response(chat_history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Optional[go.Figure]]:
        """Generate bot response for messages-format chat history and return optional chart figure."""
        if not chat_history:
            return chat_history, None

        # Ensure last message is a user turn awaiting assistant reply
        last = chat_history[-1]
        if not isinstance(last, dict) or last.get("role") != "user" or not last.get("content"):
            return chat_history, None

        try:
            question = last["content"]
            logger.info(f"Processing question: {question}")

            # Convert prior messages to pair history for stream_agent_response()
            pair_history: List[List[str]] = []
            i = 0
            while i < len(chat_history) - 1:
                m1 = chat_history[i]
                m2 = chat_history[i + 1] if i + 1 < len(chat_history) else None
                if (
                    isinstance(m1, dict)
                    and m1.get("role") == "user"
                    and isinstance(m2, dict)
                    and m2.get("role") == "assistant"
                ):
                    pair_history.append([m1.get("content", ""), m2.get("content", "")])
                    i += 2
                else:
                    i += 1

            # Call the agent for this new user question
            assistant_message, chart_fig = await stream_agent_response(question, pair_history)

            # Append assistant message back into messages history
            chat_history.append({"role": "assistant", "content": assistant_message})

            # If user asked for a chart but none was produced, try to build one
            # from the latest assistant text using the same fallback logic.
            if chart_fig is None:
                wants_chart, desired_type = detect_chart_preferences(question)
                if wants_chart and isinstance(assistant_message, str):
                    candidate_text = assistant_message
                    raw_lines = candidate_text.split('\n')
                    norm_lines = []
                    for l in raw_lines:
                        s = l.strip().lstrip("•*\t -")
                        if s:
                            norm_lines.append(s)
                    data = []
                    for l in norm_lines:
                        m = re.match(r"^(.+?):\s*([0-9][0-9.,]*)$", l)
                        if m:
                            label = re.sub(r"[*_`]+", "", m.group(1)).strip()
                            try:
                                val = float(m.group(2).replace(',', ''))
                            except Exception:
                                continue
                            data.append({"label": label, "value": val})
                    if len(data) >= 2:
                        chart_fig = generate_chart(
                            data=data,
                            chart_type=desired_type,
                            x="label",
                            y="value",
                            title="Distribución"
                        )

            logger.info("Response generation complete")
            return chat_history, chart_fig

        except Exception as e:
            error_msg = f"## ❌ Error\n\nError al procesar la solicitud:\n\n```\n{str(e)}\n```"
            logger.error(error_msg, exc_info=True)
            # Ensure we add an assistant error message for the UI
            chat_history.append({"role": "assistant", "content": error_msg})
            return chat_history, None
    
    # Event handlers
    with demo:
        # Handle form submission
        msg_submit = question_input.submit(
            fn=user_message,
            inputs=[question_input, chatbot],
            outputs=[question_input, chatbot],
            queue=True
        ).then(
            fn=bot_response,
            inputs=[chatbot],
            outputs=[chatbot, chart_display],
            api_name="ask"
        )
        
        # Handle button click
        btn_click = submit_button.click(
            fn=user_message,
            inputs=[question_input, chatbot],
            outputs=[question_input, chatbot],
            queue=True
        ).then(
            fn=bot_response,
            inputs=[chatbot],
            outputs=[chatbot, chart_display]
        )
    
    return demo

# Create the application
demo = create_application()

# Configuración para Hugging Face Spaces
def get_app():
    """Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
    # Verificar si estamos en un entorno de Hugging Face Spaces
    if os.getenv('SPACE_ID'):
        # Configuración específica para Spaces
        demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
        demo.description = """
        Este es un demo del asistente de base de datos SQL. 
        Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
        """
    
    return demo

# Para desarrollo local
if __name__ == "__main__":
    # Configuración para desarrollo local - versión simplificada para Gradio 5.x
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        debug=True,
        share=False
    )