Spaces:
Sleeping
Sleeping
File size: 6,370 Bytes
ac9f500 d318540 ac9f500 cc71d5c c544fc1 cc71d5c c544fc1 d318540 de50b3c d318540 ac9f500 c544fc1 ac9f500 c544fc1 ac9f500 c544fc1 3ed95d3 cc71d5c ac9f500 69c8cf6 ac9f500 cc71d5c ac9f500 c544fc1 cc71d5c ac9f500 cc71d5c 69c8cf6 ac9f500 69c8cf6 ac9f500 cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c 3c9ef9c cc71d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from flask import Flask, request, jsonify, send_file
from tensorflow.keras.models import load_model, Model
from PIL import Image
import numpy as np
import os
import cv2
import tensorflow as tf
from datetime import datetime
import sqlite3
app = Flask(__name__)
# β
Directory and database path
OUTPUT_DIR = '/tmp/results'
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')
def init_db():
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
image_filename TEXT,
prediction TEXT,
confidence REAL,
gradcam_filename TEXT,
timestamp TEXT
)
""")
conn.commit()
conn.close()
init_db()
# β
Load Model
model = load_model('mobilenet_glaucoma_model.h5', compile=False)
# β
Preprocess Image
def preprocess_image(img):
img = img.resize((224, 224))
img = np.array(img) / 255.0
img = np.expand_dims(img, axis=0)
return img
# β
Grad-CAM Generation
def make_gradcam(img_array, model, last_conv_layer_name='Conv_1_bn'):
"""Generate Grad-CAM for the given image and model."""
last_conv_layer = model.get_layer(last_conv_layer_name)
grad_model = Model(inputs=model.inputs, outputs=[last_conv_layer.output, model.output])
with tf.GradientTape() as tape:
conv_outputs, predictions = grad_model(img_array)
loss = predictions[:, 0]
grads = tape.gradient(loss, conv_outputs)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
conv_outputs = conv_outputs[0].numpy()
pooled_grads = pooled_grads.numpy()
for i in range(conv_outputs.shape[-1]):
conv_outputs[..., i] *= pooled_grads[i]
heatmap = tf.reduce_mean(conv_outputs, axis=-1).numpy()
heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
return heatmap
# β
Save Grad-CAM Overlay
def save_gradcam_image(original_img, heatmap, filename='gradcam.png', output_dir=OUTPUT_DIR):
"""Save the Grad-CAM overlay image and return its path."""
img = np.array(original_img.resize((224, 224)))
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
overlay = cv2.addWeighted(img, 0.6, heatmap, 0.4, 0)
filepath = os.path.join(output_dir, filename)
cv2.imwrite(filepath, overlay)
return filepath
@app.route('/')
def home():
return "Glaucoma Detection Flask API is running!"
@app.route("/test_file")
def test_file():
"""Check if the model file is present and readable."""
filepath = "mobilenet_glaucoma_model.h5"
if os.path.exists(filepath):
return f"β
Model file found at: {filepath}"
else:
return "β Model file NOT found."
@app.route('/predict', methods=['POST'])
def predict():
"""Perform prediction, save results (including uploaded image), and save to SQLite database."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
uploaded_file = request.files['file']
if uploaded_file.filename == '':
return jsonify({'error': 'No file selected'}), 400
try:
# β
Save the uploaded image
timestamp = int(datetime.now().timestamp())
uploaded_filename = f"uploaded_{timestamp}.png"
uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
uploaded_file.save(uploaded_file_path)
# β
Perform prediction
img = Image.open(uploaded_file_path).convert('RGB')
img_array = preprocess_image(img)
prediction = model.predict(img_array)[0]
glaucoma_prob = 1 - prediction[0]
normal_prob = prediction[0]
result = 'Glaucoma' if glaucoma_prob > normal_prob else 'Normal'
confidence = float(glaucoma_prob) if result == 'Glaucoma' else float(normal_prob)
# β
Grad-CAM
heatmap = make_gradcam(img_array, model, last_conv_layer_name='Conv_1_bn')
gradcam_filename = f"gradcam_{timestamp}.png"
save_gradcam_image(img, heatmap, filename=gradcam_filename)
# β
Save results to SQLite
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
VALUES (?, ?, ?, ?, ?)
""", (uploaded_filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
conn.commit()
conn.close()
return jsonify({
'prediction': result,
'confidence': confidence,
'normal_probability': float(normal_prob),
'glaucoma_probability': float(glaucoma_prob),
'gradcam_image': gradcam_filename,
'image_filename': uploaded_filename
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results', methods=['GET'])
def results():
"""List all results from the SQLite database."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
results_data = cursor.fetchall()
conn.close()
results_list = []
for record in results_data:
results_list.append({
'id': record[0],
'image_filename': record[1],
'prediction': record[2],
'confidence': record[3],
'gradcam_filename': record[4],
'timestamp': record[5]
})
return jsonify(results_list)
@app.route('/gradcam/<filename>')
def get_gradcam(filename):
"""Serve the Grad-CAM overlay image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
@app.route('/image/<filename>')
def get_image(filename):
"""Serve the original uploaded image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|