File size: 5,408 Bytes
ac9f500
 
751c399
 
 
ac9f500
751c399
ac9f500
d318540
c539386
cf2ad62
 
ac9f500
 
cc71d5c
 
 
 
c544fc1
cc71d5c
c544fc1
751c399
d318540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de50b3c
751c399
d318540
ac9f500
0e25922
f0318b1
 
c539386
0e25922
c8b28fc
0e25922
d6c8fb1
0e25922
 
 
 
 
 
 
 
 
1b4fc02
0e25922
 
ac9f500
0e25922
 
c539386
 
 
ac9f500
 
c539386
ac9f500
 
 
751c399
 
ac9f500
69c8cf6
ac9f500
cc71d5c
 
 
 
c539386
cc71d5c
 
 
3c9ef9c
 
cc71d5c
 
 
3c9ef9c
 
 
 
 
 
 
 
751c399
cc71d5c
751c399
c539386
 
751c399
c539386
 
 
 
cc71d5c
c539386
cc71d5c
 
 
 
 
751c399
cc71d5c
 
 
 
 
 
c539386
 
 
 
3c9ef9c
cc71d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c539386
cc71d5c
 
 
 
 
 
3c9ef9c
 
 
 
 
 
 
 
 
cc71d5c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import torchvision.models as models

app = Flask(__name__)

# βœ… Directory and database path
OUTPUT_DIR = '/tmp/results'
if not os.path.exists(OUTPUT_DIR):
    os.makedirs(OUTPUT_DIR)

DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')


def init_db():
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("""
        CREATE TABLE IF NOT EXISTS results (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            image_filename TEXT,
            prediction TEXT,
            confidence REAL,
            gradcam_filename TEXT,
            timestamp TEXT
        )
    """)
    conn.commit()
    conn.close()


init_db()

# 1️⃣ Instantiate the model
model = models.densenet169(pretrained=False)
model.classifier = nn.Linear(model.classifier.in_features, 3)

# 2️⃣ Load checkpoint
checkpoint = torch.load('densenet169_seed40_best2.pt', map_location='cpu')
state_dict = checkpoint['state_dict']

# 3️⃣ Fix state dict
new_state_dict = {}
for k, v in state_dict.items():
    # Check if it's prefixed with 'features.0.'
    if k.startswith('features.0.'):
        new_key = 'features.' + k[len('features.0.'):]  # Remove the '0.' segment
    else:
        new_key = k
    new_state_dict[new_key] = v

# 4️⃣ Load into the model
model.load_state_dict(new_state_dict)

# Done!
model.eval()
# βœ… Class Names
CLASS_NAMES = ["Normal", "Early Glaucoma", "Advanced Glaucoma"]

@app.route('/')
def home():
    return "Glaucoma Detection Flask API (3-Class Model) is running!"

@app.route("/test_file")
def test_file():
    """Check if the .pt model file is present and readable."""
    filepath = "densenet169_seed40_best.pt"
    if os.path.exists(filepath):
        return f"βœ… Model file found at: {filepath}"
    else:
        return "❌ Model file NOT found."

@app.route('/predict', methods=['POST'])
def predict():
    """Perform prediction using PyTorch (3-class), save results, and save to SQLite database."""
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded'}), 400

    uploaded_file = request.files['file']
    if uploaded_file.filename == '':
        return jsonify({'error': 'No file selected'}), 400

    try:
        # βœ… Save the uploaded image
        timestamp = int(datetime.now().timestamp())
        uploaded_filename = f"uploaded_{timestamp}.png"
        uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
        uploaded_file.save(uploaded_file_path)

        # βœ… Perform prediction
        img = Image.open(uploaded_file_path).convert('RGB')
        input_tensor = transform(img).unsqueeze(0)

        with torch.no_grad():
            output = model(input_tensor)
            probabilities = F.softmax(output, dim=1).cpu().numpy()[0]

        # βœ… Get result
        class_index = np.argmax(probabilities)
        result = CLASS_NAMES[class_index]
        confidence = float(probabilities[class_index])

        # βœ… Save results to SQLite
        conn = sqlite3.connect(DB_PATH)
        cursor = conn.cursor()
        cursor.execute("""
            INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp) 
            VALUES (?, ?, ?, ?, ?)
        """, (uploaded_filename, result, confidence, '', datetime.now().isoformat()))
        conn.commit()
        conn.close()

        return jsonify({
            'prediction': result,
            'confidence': confidence,
            'normal_probability': float(probabilities[0]),
            'early_glaucoma_probability': float(probabilities[1]),
            'advanced_glaucoma_probability': float(probabilities[2]),
            'gradcam_image': '',  # Not used for now
            'image_filename': uploaded_filename
        })

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/results', methods=['GET'])
def results():
    """List all results from the SQLite database."""
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
    results_data = cursor.fetchall()
    conn.close()

    results_list = []
    for record in results_data:
        results_list.append({
            'id': record[0],
            'image_filename': record[1],
            'prediction': record[2],
            'confidence': record[3],
            'gradcam_filename': record[4],
            'timestamp': record[5]
        })

    return jsonify(results_list)

@app.route('/gradcam/<filename>')
def get_gradcam(filename):
    """Serve the Grad-CAM overlay image (no-op for now)."""
    filepath = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(filepath):
        return send_file(filepath, mimetype='image/png')
    else:
        return jsonify({'error': 'File not found'}), 404

@app.route('/image/<filename>')
def get_image(filename):
    """Serve the original uploaded image."""
    filepath = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(filepath):
        return send_file(filepath, mimetype='image/png')
    else:
        return jsonify({'error': 'File not found'}), 404

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)