Spaces:
Sleeping
Sleeping
File size: 5,408 Bytes
ac9f500 751c399 ac9f500 751c399 ac9f500 d318540 c539386 cf2ad62 ac9f500 cc71d5c c544fc1 cc71d5c c544fc1 751c399 d318540 de50b3c 751c399 d318540 ac9f500 0e25922 f0318b1 c539386 0e25922 c8b28fc 0e25922 d6c8fb1 0e25922 1b4fc02 0e25922 ac9f500 0e25922 c539386 ac9f500 c539386 ac9f500 751c399 ac9f500 69c8cf6 ac9f500 cc71d5c c539386 cc71d5c 3c9ef9c cc71d5c 3c9ef9c 751c399 cc71d5c 751c399 c539386 751c399 c539386 cc71d5c c539386 cc71d5c 751c399 cc71d5c c539386 3c9ef9c cc71d5c c539386 cc71d5c 3c9ef9c cc71d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import torchvision.models as models
app = Flask(__name__)
# β
Directory and database path
OUTPUT_DIR = '/tmp/results'
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')
def init_db():
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
image_filename TEXT,
prediction TEXT,
confidence REAL,
gradcam_filename TEXT,
timestamp TEXT
)
""")
conn.commit()
conn.close()
init_db()
# 1οΈβ£ Instantiate the model
model = models.densenet169(pretrained=False)
model.classifier = nn.Linear(model.classifier.in_features, 3)
# 2οΈβ£ Load checkpoint
checkpoint = torch.load('densenet169_seed40_best2.pt', map_location='cpu')
state_dict = checkpoint['state_dict']
# 3οΈβ£ Fix state dict
new_state_dict = {}
for k, v in state_dict.items():
# Check if it's prefixed with 'features.0.'
if k.startswith('features.0.'):
new_key = 'features.' + k[len('features.0.'):] # Remove the '0.' segment
else:
new_key = k
new_state_dict[new_key] = v
# 4οΈβ£ Load into the model
model.load_state_dict(new_state_dict)
# Done!
model.eval()
# β
Class Names
CLASS_NAMES = ["Normal", "Early Glaucoma", "Advanced Glaucoma"]
@app.route('/')
def home():
return "Glaucoma Detection Flask API (3-Class Model) is running!"
@app.route("/test_file")
def test_file():
"""Check if the .pt model file is present and readable."""
filepath = "densenet169_seed40_best.pt"
if os.path.exists(filepath):
return f"β
Model file found at: {filepath}"
else:
return "β Model file NOT found."
@app.route('/predict', methods=['POST'])
def predict():
"""Perform prediction using PyTorch (3-class), save results, and save to SQLite database."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
uploaded_file = request.files['file']
if uploaded_file.filename == '':
return jsonify({'error': 'No file selected'}), 400
try:
# β
Save the uploaded image
timestamp = int(datetime.now().timestamp())
uploaded_filename = f"uploaded_{timestamp}.png"
uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
uploaded_file.save(uploaded_file_path)
# β
Perform prediction
img = Image.open(uploaded_file_path).convert('RGB')
input_tensor = transform(img).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)
probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
# β
Get result
class_index = np.argmax(probabilities)
result = CLASS_NAMES[class_index]
confidence = float(probabilities[class_index])
# β
Save results to SQLite
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
VALUES (?, ?, ?, ?, ?)
""", (uploaded_filename, result, confidence, '', datetime.now().isoformat()))
conn.commit()
conn.close()
return jsonify({
'prediction': result,
'confidence': confidence,
'normal_probability': float(probabilities[0]),
'early_glaucoma_probability': float(probabilities[1]),
'advanced_glaucoma_probability': float(probabilities[2]),
'gradcam_image': '', # Not used for now
'image_filename': uploaded_filename
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results', methods=['GET'])
def results():
"""List all results from the SQLite database."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
results_data = cursor.fetchall()
conn.close()
results_list = []
for record in results_data:
results_list.append({
'id': record[0],
'image_filename': record[1],
'prediction': record[2],
'confidence': record[3],
'gradcam_filename': record[4],
'timestamp': record[5]
})
return jsonify(results_list)
@app.route('/gradcam/<filename>')
def get_gradcam(filename):
"""Serve the Grad-CAM overlay image (no-op for now)."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
@app.route('/image/<filename>')
def get_image(filename):
"""Serve the original uploaded image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|