|
import os |
|
import zipfile |
|
import pickle |
|
from glob import glob |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
import gradio as gr |
|
|
|
from indexrl.training import ( |
|
DynamicBuffer, |
|
create_model, |
|
save_model, |
|
explore, |
|
train_iter, |
|
) |
|
from indexrl.environment import IndexRLEnv |
|
from indexrl.utils import get_n_channels, state_to_expression |
|
|
|
data_dir = "data/" |
|
os.makedirs(data_dir, exist_ok=True) |
|
|
|
meta_data_file = os.path.join(data_dir, "metadata.csv") |
|
if not os.path.exists(meta_data_file): |
|
with open(meta_data_file, "w") as fp: |
|
fp.write("Name,Channels,Path\n") |
|
|
|
|
|
def save_dataset(name, zip): |
|
with zipfile.ZipFile(zip.name, "r") as zip_ref: |
|
data_path = os.path.join(data_dir, name) |
|
zip_ref.extractall(data_path) |
|
|
|
img_path = glob(os.path.join(data_path, "images", "*.npy"))[0] |
|
n_channels = get_n_channels(img_path) |
|
|
|
with open(meta_data_file, "a") as fp: |
|
fp.write(f"{name},{n_channels},{data_path}\n") |
|
meta_data_df = pd.read_csv(meta_data_file) |
|
return meta_data_df |
|
|
|
|
|
def find_expression(dataset_name: str): |
|
meta_data_df = pd.read_csv(meta_data_file, index_col="Name") |
|
n_channels = meta_data_df["Channels"][dataset_name] |
|
data_dir = meta_data_df["Path"][dataset_name] |
|
|
|
image_dir = os.path.join(data_dir, "images") |
|
mask_dir = os.path.join(data_dir, "masks") |
|
|
|
cache_dir = os.path.join(data_dir, "cache") |
|
logs_dir = os.path.join(data_dir, "logs") |
|
models_dir = os.path.join(data_dir, "models") |
|
for dir_name in (cache_dir, logs_dir, models_dir): |
|
Path(dir_name).mkdir(parents=True, exist_ok=True) |
|
|
|
action_list = ( |
|
list("()+-*/=") + ["sq", "sqrt"] + [f"c{c}" for c in range(n_channels)] |
|
) |
|
env = IndexRLEnv(action_list, 12) |
|
agent, optimizer = create_model(len(action_list)) |
|
seen_path = os.path.join(cache_dir, "seen.pkl") if cache_dir else "" |
|
env.save_seen(seen_path) |
|
data_buffer = DynamicBuffer() |
|
|
|
i = 0 |
|
while True: |
|
i += 1 |
|
print(f"----------------\nIteration {i}") |
|
print("Collecting data...") |
|
data = explore( |
|
env.copy(), |
|
agent, |
|
image_dir, |
|
mask_dir, |
|
1, |
|
logs_dir, |
|
seen_path, |
|
n_iters=1000, |
|
) |
|
print( |
|
f"Data collection done. Collected {len(data)} examples. Buffer size = {len(data_buffer)}." |
|
) |
|
|
|
data_buffer.add_data(data) |
|
print(f"Buffer size new = {len(data_buffer)}.") |
|
|
|
agent, optimizer, loss = train_iter(agent, optimizer, data_buffer) |
|
|
|
i_str = str(i).rjust(3, "0") |
|
if models_dir: |
|
save_model(agent, f"{models_dir}/model_{i_str}_loss-{loss}.pt") |
|
if cache_dir: |
|
with open(f"{cache_dir}/data_buffer_{i_str}.pkl", "wb") as fp: |
|
pickle.dump(data_buffer, fp) |
|
|
|
with open(os.path.join(logs_dir, "tree_1.txt"), "r", encoding="utf-8") as fp: |
|
tree = fp.read() |
|
|
|
top_5 = data_buffer.get_top_n(5) |
|
top_5_str = "\n".join( |
|
map( |
|
lambda x: " ".join(state_to_expression(x[0], action_list)) |
|
+ " " |
|
+ str(x[1]), |
|
top_5, |
|
) |
|
) |
|
|
|
yield tree, top_5_str |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# IndexRL") |
|
meta_data_df = pd.read_csv(meta_data_file) |
|
|
|
with gr.Tab("Find Expressions"): |
|
select_dataset = gr.Dropdown( |
|
label="Select Dataset", |
|
choices=meta_data_df["Name"].to_list(), |
|
) |
|
find_exp_btn = gr.Button("Find Expressions") |
|
stop_btn = gr.Button("Stop") |
|
out_exp_tree = gr.Textbox(label="Latest Expression Tree", interactive=False) |
|
best_exps = gr.Textbox(label="Best Expressions", interactive=False) |
|
|
|
with gr.Tab("Datasets"): |
|
dataset_upload = gr.File(label="Upload Data ZIP file") |
|
dataset_name = gr.Textbox(label="Dataset Name") |
|
dataset_upload_btn = gr.Button("Upload") |
|
|
|
dataset_table = gr.Dataframe(meta_data_df, label="Dataset Table") |
|
|
|
find_exp_event = find_exp_btn.click( |
|
find_expression, inputs=[select_dataset], outputs=[out_exp_tree, best_exps] |
|
) |
|
stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[find_exp_event]) |
|
|
|
dataset_upload.upload( |
|
lambda x: ".".join(os.path.basename(x.orig_name).split(".")[:-1]), |
|
inputs=dataset_upload, |
|
outputs=dataset_name, |
|
) |
|
dataset_upload_btn.click( |
|
save_dataset, inputs=[dataset_name, dataset_upload], outputs=[dataset_table] |
|
) |
|
|
|
demo.queue(concurrency_count=10).launch(debug=True) |
|
|