Spaces:
Running
Running
File size: 19,999 Bytes
ab78aff 17380d7 ab78aff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import sys
import os
import streamlit as st
import pickle
import pandas as pd
import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import warnings
import torch
from config_streamlit import (MODEL_PATH_LIGHTGBM, DATA_PATH, TRAIN_RATIO,
TEXT_COLOR, HEADER_COLOR, ACCENT_COLOR,
BUTTON_BG, BUTTON_HOVER_BG, BG_COLOR,
INPUT_BG, PROGRESS_COLOR, PLOT_COLOR
)
from lightgbm_model.scripts.config_lightgbm import FEATURES
from transformer_model.scripts.utils.informer_dataset_class import InformerDataset
from transformer_model.scripts.training.load_basis_model import load_moment_model
from transformer_model.scripts.config_transformer import CHECKPOINT_DIR, FORECAST_HORIZON, SEQ_LEN
from sklearn.preprocessing import StandardScaler
from huggingface_hub import hf_hub_download
# ============================== Layout ==============================
# Streamlit & warnings config
warnings.filterwarnings("ignore", category=FutureWarning)
st.set_page_config(page_title="Electricity Consumption Forecast", layout="wide")
#CSS part
st.markdown(f"""
<style>
body, .block-container {{
background-color: {BG_COLOR} !important;
}}
html, body, [class*="css"] {{
color: {TEXT_COLOR} !important;
font-family: 'sans-serif';
}}
h1, h2, h3, h4, h5, h6 {{
color: {HEADER_COLOR} !important;
}}
.stButton > button {{
background-color: {BUTTON_BG};
color: {TEXT_COLOR};
border: 1px solid {ACCENT_COLOR};
}}
.stButton > button:hover {{
background-color: {BUTTON_HOVER_BG};
}}
.stSelectbox div[data-baseweb="select"],
.stDateInput input {{
background-color: {INPUT_BG} !important;
color: {TEXT_COLOR} !important;
}}
[data-testid="stMetricLabel"],
[data-testid="stMetricValue"] {{
color: {TEXT_COLOR} !important;
}}
.stMarkdown p {{
color: {TEXT_COLOR} !important;
}}
.stDataFrame tbody tr td {{
color: {TEXT_COLOR} !important;
}}
.stProgress > div > div {{
background-color: {PROGRESS_COLOR} !important;
}}
/* Alle Label-Texte für Inputs/Sliders */
label {{
color: {TEXT_COLOR} !important;
}}
/* Text in selectbox-Optionsfeldern */
.stSelectbox label, .stSelectbox div {{
color: {TEXT_COLOR} !important;
}}
/* DateInput angleichen an Selectbox */
.stDateInput input {{
background-color: #f2f6fa !important;
color: {TEXT_COLOR} !important;
border: none !important;
border-radius: 5px !important;
}}
</style>
""", unsafe_allow_html=True)
st.title("Electricity Consumption Forecast: Hourly Simulation")
st.write("Welcome to the simulation interface!")
# ============================== Session State Init ==============================
def init_session_state():
defaults = {
"is_running": False,
"start_index": 0,
"true_vals": [],
"pred_vals": [],
"true_timestamps": [],
"pred_timestamps": [],
"last_fig": None,
"valid_pos": 0
}
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
init_session_state()
# ============================== Loaders ==============================
@st.cache_data
def load_lightgbm_model():
with open(MODEL_PATH_LIGHTGBM, "rb") as f:
return pickle.load(f)
@st.cache_resource
def load_transformer_model_and_dataset():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model
model = load_moment_model()
checkpoint_path = hf_hub_download(
repo_id="dlaj/energy-forecasting-files",
filename="transformer_model/model_final.pth",
repo_type="dataset"
)
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
model.to(device)
model.eval()
# Datasets
train_dataset = InformerDataset(data_split="train", forecast_horizon=FORECAST_HORIZON, random_seed=13)
test_dataset = InformerDataset(data_split="test", forecast_horizon=FORECAST_HORIZON, random_seed=13)
test_dataset.scaler = train_dataset.scaler
return model, test_dataset, device
@st.cache_data
def load_data():
csv_path = hf_hub_download(
repo_id="dlaj/energy-forecasting-files",
filename="data/processed/energy_consumption_aggregated_cleaned.csv",
repo_type="dataset"
)
df = pd.read_csv(csv_path, parse_dates=["date"])
return df
# ============================== Utility Functions ==============================
def predict_transformer_step(model, dataset, idx, device):
"""Performs a single prediction step with the transformer model."""
timeseries, _, input_mask = dataset[idx]
timeseries = torch.tensor(timeseries, dtype=torch.float32).unsqueeze(0).to(device)
input_mask = torch.tensor(input_mask, dtype=torch.bool).unsqueeze(0).to(device)
with torch.no_grad():
output = model(x_enc=timeseries, input_mask=input_mask)
pred = output.forecast[:, 0, :].cpu().numpy().flatten()
# Rückskalieren
dummy = np.zeros((len(pred), dataset.n_channels))
dummy[:, 0] = pred
pred_original = dataset.scaler.inverse_transform(dummy)[:, 0]
return float(pred_original[0])
def init_simulation_layout():
col1, spacer, col2 = st.columns([3, 0.2, 1])
plot_title = col1.empty()
plot_container = col1.empty()
x_axis_label = col1.empty()
info_container = col2.empty()
return plot_title, plot_container, x_axis_label, info_container
def create_prediction_plot(pred_timestamps, pred_vals, true_timestamps, true_vals, window_hours, y_min=None, y_max=None):
"""Generates the matplotlib figure for plotting prediction vs. actual."""
fig, ax = plt.subplots(figsize=(8, 5), constrained_layout=True, facecolor=PLOT_COLOR)
ax.set_facecolor(PLOT_COLOR)
ax.plot(pred_timestamps[-window_hours:], pred_vals[-window_hours:], label="Prediction", color="#EF233C", linestyle="--")
if true_vals:
ax.plot(true_timestamps[-window_hours:], true_vals[-window_hours:], label="Actual", color="#0077B6")
ax.set_ylabel("Consumption (MW)", fontsize=8, color=TEXT_COLOR)
ax.legend(
fontsize=8,
loc="upper left",
bbox_to_anchor=(0, 0.95),
facecolor= INPUT_BG, # INPUT_BG
edgecolor= ACCENT_COLOR, # ACCENT_COLOR
labelcolor= TEXT_COLOR # TEXT_COLOR
)
ax.yaxis.grid(True, linestyle=':', linewidth=0.5, alpha=0.7)
ax.set_ylim(y_min, y_max)
ax.xaxis.set_major_locator(mdates.DayLocator(interval=1))
ax.xaxis.set_major_formatter(mdates.DateFormatter("%m-%d"))
ax.tick_params(axis="x", labelrotation=0, labelsize=5, colors=TEXT_COLOR)
ax.tick_params(axis="y", labelsize=5, colors=TEXT_COLOR)
#fig.patch.set_facecolor('#e6ecf0') # outer area
for spine in ax.spines.values():
spine.set_visible(False)
st.session_state.last_fig = fig
return fig
def render_simulation_view(timestamp, prediction, actual, progress, fig, paused=False):
"""Displays the simulation plot and metrics in the UI."""
title = "Actual vs. Prediction (Paused)" if paused else "Actual vs. Prediction"
plot_title.markdown(
f"<div style='text-align: center; font-size: 20pt; font-weight: bold; color: {TEXT_COLOR}; margin-bottom: -0.7rem; margin-top: 0rem;'>"
f"{title}</div>",
unsafe_allow_html=True
)
plot_container.pyplot(fig)
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
x_axis_label.markdown(
f"<div style='text-align: center; font-size: 14pt; color: {TEXT_COLOR}; margin-top: -0.5rem;'>"
f"Time</div>",
unsafe_allow_html=True
)
with info_container.container():
st.markdown("<div style='margin-top: 5rem;'></div>", unsafe_allow_html=True)
st.markdown(
f"<span style='font-size: 24px; font-weight: 600; color: {HEADER_COLOR} !important;'>Time: {timestamp}</span>",
unsafe_allow_html=True
)
st.metric("Prediction", f"{prediction:,.0f} MW" if prediction is not None else "–")
st.metric("Actual", f"{actual:,.0f} MW" if actual is not None else "–")
st.caption("Simulation Progress")
st.progress(progress)
if len(st.session_state.true_vals) > 1:
true_arr = np.array(st.session_state.true_vals)
pred_arr = np.array(st.session_state.pred_vals[:-1])
min_len = min(len(true_arr), len(pred_arr)) #just start if there are 2 actual values
if min_len >= 1:
errors = np.abs(true_arr[:min_len] - pred_arr[:min_len])
mape = np.mean(errors / np.where(true_arr[:min_len] == 0, 1e-10, true_arr[:min_len])) * 100
mae = np.mean(errors)
max_error = np.max(errors)
st.divider()
st.markdown(
f"<span style='font-size: 24px; font-weight: 600; color: {HEADER_COLOR} !important;'>Interim Metrics</span>",
unsafe_allow_html=True
)
st.metric("MAPE (so far)", f"{mape:.2f} %")
st.metric("MAE (so far)", f"{mae:,.0f} MW")
st.metric("Max Error", f"{max_error:,.0f} MW")
# ============================== Data Preparation ==============================
df_full = load_data()
# Split Train/Test
train_size = int(len(df_full) * TRAIN_RATIO)
test_df_raw = df_full.iloc[train_size:].reset_index(drop=True)
# Start at first full hour (00:00)
first_full_day_index = test_df_raw[test_df_raw["date"].dt.time == pd.Timestamp("00:00:00").time()].index[0]
test_df_full = test_df_raw.iloc[first_full_day_index:].reset_index(drop=True)
# Select simulation window via date picker
min_date = test_df_full["date"].min().date()
max_date = test_df_full["date"].max().date()
# ============================== UI Controls ==============================
st.markdown("### Simulation Settings")
col1, col2 = st.columns([1, 1])
with col1:
st.markdown("**General Settings**")
model_choice = st.selectbox("Choose prediction model", ["LightGBM", "Transformer Model (moments)"])
if model_choice == "Transformer Model(moments)":
st.caption("⚠️ Note: Transformer model runs slower without GPU. (Use Speed = 10)")
window_days = st.selectbox("Display window (days)", options=[3, 5, 7], index=0)
window_hours = window_days * 24
speed = st.slider("Speed", 1, 10, 5)
with col2:
st.markdown(f"**Date Range** (from {min_date} to {max_date})")
start_date = st.date_input("Start Date", value=min_date, min_value=min_date, max_value=max_date)
end_date = st.date_input("End Date", value=max_date, min_value=min_date, max_value=max_date)
# ============================== Data Preparation (filtered) ==============================
# final filtered date window
test_df_filtered = test_df_full[
(test_df_full["date"].dt.date >= start_date) &
(test_df_full["date"].dt.date <= end_date)
].reset_index(drop=True)
# For progression bar
total_steps_ui = len(test_df_filtered)
# ============================== Buttons ==============================
st.markdown("### Start Simulation")
col1, col2, col3 = st.columns([1, 1, 14])
with col1:
play_pause_text = "▶️ Start" if not st.session_state.is_running else "⏸️ Pause"
if st.button(play_pause_text):
st.session_state.is_running = not st.session_state.is_running
st.rerun()
with col2:
reset_button = st.button("🔄 Reset")
# Reset logic
if reset_button:
st.session_state.start_index = 0
st.session_state.pred_vals = []
st.session_state.true_vals = []
st.session_state.pred_timestamps = []
st.session_state.true_timestamps = []
st.session_state.last_fig = None
st.session_state.is_running = False
st.session_state.valid_pos = 0
st.rerun()
# Auto-reset on critical parameter change while running
if st.session_state.is_running and (
start_date != st.session_state.get("last_start_date") or
end_date != st.session_state.get("last_end_date") or
model_choice != st.session_state.get("last_model_choice")
):
st.session_state.start_index = 0
st.session_state.pred_vals = []
st.session_state.true_vals = []
st.session_state.pred_timestamps = []
st.session_state.true_timestamps = []
st.session_state.last_fig = None
st.session_state.valid_pos = 0
st.rerun()
# Track current selections for change detection
st.session_state.last_start_date = start_date
st.session_state.last_end_date = end_date
st.session_state.last_model_choice = model_choice
# ============================== Paused Mode ==============================
if not st.session_state.is_running and st.session_state.last_fig is not None:
st.write("Simulation paused...")
plot_title, plot_container, x_axis_label, info_container = init_simulation_layout()
timestamp = st.session_state.pred_timestamps[-1] if st.session_state.pred_timestamps else "–"
prediction = st.session_state.pred_vals[-1] if st.session_state.pred_vals else None
actual = st.session_state.true_vals[-1] if st.session_state.true_vals else None
progress = st.session_state.start_index / total_steps_ui
render_simulation_view(timestamp, prediction, actual, progress, st.session_state.last_fig, paused=True)
# ============================== initialize values ==============================
#if lightGbm use testdata from above
if model_choice == "LightGBM":
test_df = test_df_filtered.copy()
#Shared state references for storing predictions and ground truths
true_vals = st.session_state.true_vals
pred_vals = st.session_state.pred_vals
true_timestamps = st.session_state.true_timestamps
pred_timestamps = st.session_state.pred_timestamps
# ============================== LightGBM Simulation ==============================
if model_choice == "LightGBM" and st.session_state.is_running:
model = load_lightgbm_model()
st.write("Simulation started...")
st.markdown('<div id="simulation"></div>', unsafe_allow_html=True)
plot_title, plot_container, x_axis_label, info_container = init_simulation_layout()
for i in range(st.session_state.start_index, len(test_df)):
if not st.session_state.is_running:
break
current = test_df.iloc[i]
timestamp = current["date"]
features = current[FEATURES].values.reshape(1, -1)
prediction = model.predict(features)[0]
pred_vals.append(prediction)
pred_timestamps.append(timestamp)
if i >= 1:
prev_actual = test_df.iloc[i - 1]["consumption_MW"]
prev_time = test_df.iloc[i - 1]["date"]
true_vals.append(prev_actual)
true_timestamps.append(prev_time)
fig = create_prediction_plot(
pred_timestamps, pred_vals,
true_timestamps, true_vals,
window_hours,
y_min= test_df_filtered["consumption_MW"].min() - 2000,
y_max= test_df_filtered["consumption_MW"].max() + 2000
)
render_simulation_view(timestamp, prediction, prev_actual if i >= 1 else None, i / len(test_df), fig)
plt.close(fig) # Speicher freigeben
st.session_state.start_index = i + 1
time.sleep(1 / (speed + 1e-9))
st.success("Simulation completed!")
# ============================== Transformer Simulation ==============================
if model_choice == "Transformer Model(moments)":
if st.session_state.is_running:
st.write("Simulation started (Transformer)...")
st.markdown('<div id="simulation"></div>', unsafe_allow_html=True)
plot_title, plot_container, x_axis_label, info_container = init_simulation_layout()
# Zugriff auf Modell, Dataset, Device
model, test_dataset, device = load_transformer_model_and_dataset()
data = test_dataset.data # bereits skaliert
scaler = test_dataset.scaler
n_channels = test_dataset.n_channels
test_start_idx = len(InformerDataset(data_split="train", forecast_horizon=FORECAST_HORIZON)) + SEQ_LEN
base_timestamp = pd.read_csv(DATA_PATH, parse_dates=["date"])["date"].iloc[test_start_idx] #get original timestamp for later, cause not in dataset anymore
# Schritt 1: Finde Index, ab dem Stunde = 00:00 ist
offset = 0
while (base_timestamp + pd.Timedelta(hours=offset)).time() != pd.Timestamp("00:00:00").time():
offset += 1
# Neuer Startindex in der Simulation
start_index = offset
# Session-State bei Bedarf initial setzen
if "start_index" not in st.session_state or st.session_state.start_index == 0:
st.session_state.start_index = start_index
# Vorbereiten: Liste der gültigen i-Werte im gewünschten Zeitraum
valid_indices = []
for i in range(start_index, len(test_dataset)):
timestamp = base_timestamp + pd.Timedelta(hours=i)
if start_date <= timestamp.date() <= end_date:
valid_indices.append(i)
# Fortschrittsanzeige
total_steps = len(valid_indices)
# Aktueller Fortschritt in der Liste (nicht: globaler Dataset-Index!)
if "valid_pos" not in st.session_state:
st.session_state.valid_pos = 0
# Hauptschleife: Nur noch über gültige Indizes iterieren
for relative_idx, i in enumerate(valid_indices[st.session_state.valid_pos:]):
#for i in range(st.session_state.start_index, len(test_dataset)):
if not st.session_state.is_running:
break
current_pred = predict_transformer_step(model, test_dataset, i, device)
current_time = base_timestamp + pd.Timedelta(hours=i)
pred_vals.append(current_pred)
pred_timestamps.append(current_time)
if i >= 1:
prev_actual = test_dataset[i - 1][1][0, 0] # erster Forecast-Wert der letzten Zeile
# Rückskalieren
dummy_actual = np.zeros((1, n_channels))
dummy_actual[:, 0] = prev_actual
actual_val = scaler.inverse_transform(dummy_actual)[0, 0]
true_time = current_time - pd.Timedelta(hours=1)
if true_time >= pd.to_datetime(start_date):
true_vals.append(actual_val)
true_timestamps.append(true_time)
# Plot erzeugen
fig = create_prediction_plot(
pred_timestamps, pred_vals,
true_timestamps, true_vals,
window_hours,
y_min= test_df_filtered["consumption_MW"].min() - 2000,
y_max= test_df_filtered["consumption_MW"].max() + 2000
)
if len(pred_vals) >= 2 and len(true_vals) >= 1:
render_simulation_view(current_time, current_pred, actual_val if i >= 1 else None, st.session_state.valid_pos / total_steps, fig)
plt.close(fig) # Speicher freigeben
st.session_state.valid_pos += 1
time.sleep(1 / (speed + 1e-9))
st.success("Simulation completed!")
# ============================== Scroll Sync ==============================
st.markdown("""
<script>
window.addEventListener("message", (event) => {
if (event.data.type === "save_scroll") {
const pyScroll = event.data.scrollY;
window.parent.postMessage({type: "streamlit:setComponentValue", value: pyScroll}, "*");
}
});
</script>
""", unsafe_allow_html=True)
|