Spaces:
dreroc
/
Running on Zero

UniPic / src /datasets /text2image /text2image.py
yichenchenchen's picture
Upload 25 files
ea88892 verified
from torch.utils.data import Dataset
from PIL import Image
import os
import json
import random
import torch
import numpy as np
from einops import rearrange
from xtuner.registry import BUILDER
from mmengine.registry import DATASETS
from src.datasets.utils import crop2square
from glob import glob
from typing import List, Dict, Any, Optional
import mmap
import struct
from src.datasets.utils import crop2square, encode_fn
from xtuner.utils import DEFAULT_IMAGE_TOKEN
@BUILDER.register_module()
class Text2ImageDataset(Dataset):
def __init__(self,
data_path,
local_folder,
image_size,
unconditional=0.1,
tokenizer=None,
prompt_template=None,
max_length=1024,
crop_image=True,
cap_source='caption',
):
super().__init__()
self.data_path = data_path
self._load_data(data_path)
self.unconditional = unconditional
self.local_folder = local_folder
self.cap_source = cap_source
self.image_size = image_size
self.tokenizer = BUILDER.build(tokenizer)
self.prompt_template = prompt_template
self.max_length = max_length
self.crop_image = crop_image
self.metainfo = {'task': 'unified'}
self.tokenizer.add_tokens(["<image>"], special_tokens=True)
def _load_data(self, data_path):
with open(data_path, 'r') as f:
self.data_list = json.load(f)
print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True)
def full_init(self):
"""Dummy full_init to be compatible with MMEngine ConcatDataset."""
return
def __len__(self):
return len(self.data_list)
def _read_image(self, image_file):
image = Image.open(os.path.join(self.local_folder, image_file))
assert image.width > 8 and image.height > 8, f"Image: {image.size}"
assert image.width / image.height > 0.1, f"Image: {image.size}"
assert image.width / image.height < 10, f"Image: {image.size}"
return image
def _process_text(self, text):
if random.uniform(0, 1) < self.unconditional:
prompt = "Generate an image."
else:
prompt = f"Generate an image: {text.strip()}"
prompt = self.prompt_template['INSTRUCTION'].format(input=prompt)
input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors='pt')[0]
return dict(input_ids=input_ids[:self.max_length])
def _process_image(self, image):
data = dict()
if self.crop_image:
image = crop2square(image)
else:
target_size = max(image.size)
image = image.resize(size=(target_size, target_size))
image = image.resize(size=(self.image_size, self.image_size))
pixel_values = torch.from_numpy(np.array(image)).float()
pixel_values = pixel_values / 255
pixel_values = 2 * pixel_values - 1
pixel_values = rearrange(pixel_values, 'h w c -> c h w')
data.update(pixel_values=pixel_values)
return data
def _retry(self):
return self.__getitem__(random.choice(range(self.__len__())))
def __getitem__(self, idx):
try:
data_sample = self.data_list[idx]
image = self._read_image(data_sample['image']).convert('RGB')
caption = data_sample[self.cap_source]
data = self._process_image(image)
data.update(self._process_text(caption))
data.update(type='text2image')
return data
except Exception as e:
print(f"Error when reading {self.data_path}:{self.data_list[idx]}: {e}", flush=True)
return self._retry()
@DATASETS.register_module()
@BUILDER.register_module()
class LargeText2ImageDataset(Text2ImageDataset):
# self.data_list only contains paths of images and captions
def __init__(self, cap_folder=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.cap_folder = self.local_folder if cap_folder is None else cap_folder
def _load_data(self, data_path): # image path and annotation path are saved in a json file
if data_path.endswith(".json"):
with open(data_path, 'r') as f:
self.data_list = json.load(f)
else:
self.data_list = []
json_files = glob(f'{data_path}/*.json')
for json_file in json_files:
with open(json_file, 'r') as f:
self.data_list += json.load(f)
print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True)
def __getitem__(self, idx):
try:
data_sample = self.data_list[idx]
image = self._read_image(data_sample['image']).convert('RGB')
with open(f"{self.cap_folder}/{data_sample['annotation']}", 'r') as f:
caption = json.load(f)[self.cap_source]
data = self._process_image(image)
data.update(self._process_text(caption))
data.update(type='text2image')
return data
except Exception as e:
print(f"Error when reading {self.data_path}:{data_sample}: {e}", flush=True)
return self._retry()
@DATASETS.register_module()
@BUILDER.register_module()
class MMapT2IDataset(Dataset):
"""
Map-style Text2Image Dataset with mmap-based random access.
一次性在 __init__ 打开 mmap;__getitem__ O(1) 读取指定行。
"""
def __init__(
self,
jsonl_path: str,
idx_path: str,
image_size: int,
tokenizer: Optional[Dict] = None,
template_map_fn: Optional[Dict] = None,
cap_source: str = "prompt",
max_length: int = 2048,
image_length: int = 512,
unconditional: float = 0.01,
crop_image: bool = False,
):
super().__init__()
# ---------- 基础参数 ----------
self.jsonl_path = jsonl_path
self.image_size = image_size
self.cap_source = cap_source
self.max_length = max_length
self.unconditional = unconditional
self.crop_image = crop_image
# ---------- tokenizer / template ----------
self.tokenizer = BUILDER.build(tokenizer)
self.template_map_fn = template_map_fn
# ---------- mmap 加载 ----------
self._open_mmap(jsonl_path, idx_path)
self.metainfo = {'task' :'unified'}
# ===== mmap & index =====
def _open_mmap(self, jsonl_path: str, idx_path: str):
# mmap 文件
self._jsonl_fp = open(jsonl_path, "r+b")
self._mm = mmap.mmap(self._jsonl_fp.fileno(), 0, access=mmap.ACCESS_READ)
# 读取 offset 索引
with open(idx_path, "rb") as f:
nlines = struct.unpack("<Q", f.read(8))[0]
self._offsets = np.frombuffer(f.read(8 * nlines), dtype=np.uint64)
print(f"[MMapT2IDataset] {jsonl_path}: {nlines} lines indexed")
def __len__(self) -> int:
return self._offsets.size
def full_init(self):
"""Dummy full_init to be compatible with MMEngine ConcatDataset."""
return
def _read_line(self, idx: int) -> str:
off = int(self._offsets[idx])
self._mm.seek(off)
return self._mm.readline().decode("utf-8")
# ===== 核心处理 =====
def _load_image(self, path: str) -> torch.Tensor:
img = Image.open(path).convert("RGB")
# 预处理:裁剪成方形 / pad
if self.crop_image:
img = crop2square(img)
else:
target_size = max(img.size)
img = img.resize((target_size, target_size))
img = img.resize((self.image_size, self.image_size))
arr = np.asarray(img, dtype=np.uint8) # HWC uint8
px = torch.as_tensor(arr).float() / 255.0 # 0-1
px = 2 * px - 1 # -1 ~ 1
return rearrange(px, "h w c -> c h w") # CHW
def _build_prompt(self, caption: str) -> torch.Tensor:
if random.random() < self.unconditional:
caption = "Generate an image."
else:
caption = f"Generate an image: {caption.strip()}"
instr = self.template_map_fn["INSTRUCTION"].format(input=caption)
ids = self.tokenizer.encode(
instr, add_special_tokens=True, return_tensors="pt"
)[0][: self.max_length]
return ids
def __getitem__(self, idx: int) -> Dict[str, Any]:
# 1) 取 jsonl 行
sample = json.loads(self._read_line(idx))
# 2) 加载 & 处理图像
pixel_values = self._load_image(sample["image"])
# 3) 处理文本
caption = sample.get(self.cap_source, "")
input_ids = self._build_prompt(caption)
# 4) 打包
data = dict(
pixel_values=pixel_values,
input_ids=input_ids,
type="text2image",
image_file=sample["image"],
idx=idx,
)
return data
@DATASETS.register_module()
@BUILDER.register_module()
class ReconstructDataset(Dataset):
def __init__(self,
data_path: str,
image_size: int,
tokenizer=None,
prompt_template=None,
cap_source: str = "prompt",
max_length: int = 8192,
crop_image: bool = True,
img_prefix: str = ""):
super().__init__()
self.image_size = image_size
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(["<image>"], special_tokens=True)
self.prompt_template = prompt_template
self.cap_source = cap_source
self.max_length = max_length
self.crop_image = crop_image
self.img_prefix = img_prefix
self._load_data(data_path)
m = n = self.image_size // 16
self.image_token_repeat = m * n + 64
self.metainfo = {'task': 'unified'}
def full_init(self):
"""Dummy full_init to be compatible with MMEngine ConcatDataset."""
return
def _load_data(self, path):
with open(path) as f:
self.data_list = [json.loads(l) for l in f]
print(f"[I2ICaptionReconstructDataset] Loaded {len(self.data_list)} samples from {path}")
def _add_prefix(self, rel):
return os.path.join(self.img_prefix, rel.lstrip("/")) if self.img_prefix else rel
def _read_image(self, path):
img = Image.open(path).convert("RGB")
assert img.width > 8 and img.height > 8 and 0.1 < img.width / img.height < 10
return img
# ---------- preprocess ----------
def _process_image(self, img):
img = crop2square(img) if self.crop_image else img.resize((max(img.size),)*2)
img = img.resize((self.image_size, self.image_size))
px = torch.from_numpy(np.array(img)).float() / 255.
px = 2 * px - 1
return rearrange(px, "h w c -> c h w")
def _encode_prompt(self, text):
# for bad_token in ["[IMAGE]", "<image_placeholder>", "<image_plaeholder>"]:
# text = text.replace(bad_token, "")
text = "Repeat this image."
prompt_in = f"<image>\n{text.strip()}"
prompt = self.prompt_template["INSTRUCTION"].format(input=prompt_in)
prompt = prompt.replace("<image>", "<image>" * self.image_token_repeat)
input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")[0]
mask = (input_ids != self.tokenizer.pad_token_id).long()
return input_ids[:self.max_length], mask[:self.max_length]
def __len__(self):
return len(self.data_list)
def _retry(self):
return self.__getitem__(random.randrange(len(self)))
def __getitem__(self, idx):
try:
sample = self.data_list[idx]
src_img = self._read_image(self._add_prefix(sample["image"]))
tgt_img = src_img
caption = sample[self.cap_source]
px_src = self._process_image(src_img)
px_tgt = self._process_image(tgt_img)
input_ids, mask = self._encode_prompt(caption)
return {
"pixel_values_src": px_src,
"pixel_values": px_tgt,
"input_ids": input_ids,
"attention_mask": mask,
"type": "image_edit"
}
except Exception as e:
print(f"[I2ICaptionReconstructDataset] Error @ {idx}: {e}")
return self._retry()
@DATASETS.register_module()
@BUILDER.register_module()
class UncondReconstructDataset(Dataset):
def __init__(self,
data_path: str,
image_size: int,
tokenizer=None,
prompt_template=None,
cap_source: str = "prompt",
max_length: int = 8192,
crop_image: bool = True,
img_prefix: str = ""):
super().__init__()
self.image_size = image_size
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(["<image>"], special_tokens=True)
self.prompt_template = prompt_template
self.max_length = max_length
self.crop_image = crop_image
self.img_prefix = img_prefix
self.cap_source = cap_source
self._load_data(data_path)
# 计算 image token 展开数量
m = n = self.image_size // 16
self.image_token_repeat = m * n + 64
self.metainfo = {'task': 'unified'}
def _load_data(self, path):
with open(path) as f:
self.data_list = [json.loads(l) for l in f]
print(f"[I2IUncondReconstructDataset] Loaded {len(self.data_list)} samples from {path}")
def _add_prefix(self, rel_path):
return os.path.join(self.img_prefix, rel_path.lstrip("/")) if self.img_prefix else rel_path
def full_init(self):
"""Dummy full_init to be compatible with MMEngine ConcatDataset."""
return
def _read_image(self, path):
image = Image.open(path).convert("RGB")
assert image.width > 8 and image.height > 8 and 0.1 < image.width / image.height < 10
return image
# ---------- preprocess ----------
def _process_image(self, img):
img = crop2square(img) if self.crop_image else img.resize((max(img.size),)*2)
img = img.resize((self.image_size, self.image_size))
px = torch.from_numpy(np.array(img)).float() / 255.
px = 2 * px - 1
return rearrange(px, "h w c -> c h w")
def __len__(self):
return len(self.data_list)
def _retry(self, max_tries=5):
for _ in range(max_tries):
try:
return self.__getitem__(random.randrange(len(self)))
except Exception:
continue
raise RuntimeError("Exceeded max retries in I2IUncondReconstructDataset")
def __getitem__(self, idx):
try:
sample = self.data_list[idx]
path = self._add_prefix(sample["image"])
img = self._read_image(path)
px = self._process_image(img)
# ==== 填入空文本 ====
input_ids = torch.zeros(0, dtype=torch.long)
attention_mask = torch.zeros(0, dtype=torch.long)
return {
"pixel_values_src": px,
"pixel_values": px.clone(),
"type": "image_edit",
"input_ids": input_ids,
"attention_mask": attention_mask,
# 重建任务不再输出 input_ids / attention_mask
}
except Exception as e:
print(f"[I2IUncondReconstructDataset] Error @ {idx}: {e}")
return self._retry()
@DATASETS.register_module()
@BUILDER.register_module()
class Text2ImageJSONLDataset(Dataset):
def __init__(self,
data_path,
image_size,
tokenizer=None,
prompt_template=None,
cap_source='prompt',
max_length=1024,
unconditional=0.1,
crop_image=True,
):
super().__init__()
self.data_path = data_path
self._load_data(data_path)
self.image_size = image_size
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(["<image>"], special_tokens=True)
self.prompt_template = prompt_template
self.cap_source = cap_source
self.max_length = max_length
self.unconditional = unconditional
self.crop_image = crop_image
self.metainfo = {'task': 'unified'}
def _load_data(self, data_path):
self.data_list = []
with open(data_path, 'r') as f:
for line in f:
self.data_list.append(json.loads(line.strip()))
print(f"Loaded {len(self.data_list)} samples from {data_path}")
def full_init(self):
"""Dummy full_init for MMEngine ConcatDataset compatibility."""
pass
def __len__(self):
return len(self.data_list)
def _read_image(self, image_file):
image = Image.open(image_file).convert('RGB')
assert image.width > 8 and image.height > 8
assert 0.1 < image.width / image.height < 10
return image
def _process_image(self, image):
if self.crop_image:
image = crop2square(image)
else:
target_size = max(image.size)
image = image.resize((target_size, target_size))
image = image.resize((self.image_size, self.image_size))
pixel_values = torch.from_numpy(np.array(image)).float() / 255.0
pixel_values = 2 * pixel_values - 1 # [-1, 1]
pixel_values = rearrange(pixel_values, 'h w c -> c h w')
return dict(pixel_values=pixel_values)
def _process_text(self, text):
if random.uniform(0, 1) < self.unconditional:
text = "Generate an image."
else:
text = f"Generate an image: {text.strip()}"
prompt = self.prompt_template['INSTRUCTION'].format(input=text)
input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors='pt')[0]
return dict(input_ids=input_ids[:self.max_length])
def _retry(self):
return self.__getitem__(random.randint(0, len(self.data_list) - 1))
def __getitem__(self, idx):
try:
sample = self.data_list[idx]
image = self._read_image(sample['image'])
caption = sample[self.cap_source]
data = self._process_image(image)
data.update(self._process_text(caption))
data.update(type='text2image')
return data
except Exception as e:
print(f"[JSONLDataset] Error reading sample #{idx}: {e}")
return self._retry()
# 纯文生图没有占位符的问题,下面编辑数据集需要考虑占位符
@DATASETS.register_module()
@BUILDER.register_module()
class ImageEditJSONLDataset(Dataset):
"""
Dataset for <src, tgt, prompt> image editing, now decoupled from tokenization logic.
"""
def __init__(self,
data_path: str,
image_size: int,
tokenizer=None,
prompt_template=None,
max_length: int = 8192,
cap_source: str = "prompt",
unconditional: float = 0,
crop_image: bool = False,
img_prefix: str = ""):
super().__init__()
self.data_path = data_path
self.image_size = image_size
self.tokenizer = BUILDER.build(tokenizer)
self.prompt_template = prompt_template
self.max_length = max_length
self.cap_source = cap_source
self.unconditional = unconditional
self.crop_image = crop_image
self.img_prefix = img_prefix
self._load_data(data_path)
# Calculate image token repetition length, consistent with inference.
m = n = self.image_size // 16
self.image_token_repeat = m * n + 64
self.metainfo = {'task': 'unified'}
self.tokenizer.add_tokens(["<image>"], special_tokens=True)
self.image_token_idx = self.tokenizer.convert_tokens_to_ids("<image>")
print(f"Registered <image> token at index {self.image_token_idx}")
def _load_data(self, path):
with open(path) as f:
self.data_list = [json.loads(l) for l in f]
print(f"[ImageEditJSONLDataset] Loaded {len(self.data_list)} samples from {path}")
def full_init(self):
"""Dummy full_init for MMEngine ConcatDataset compatibility."""
pass
def _add_prefix(self, rel_path):
return os.path.join(self.img_prefix, rel_path.lstrip("/")) if self.img_prefix else rel_path
def _read_image(self, path):
path = path.replace("datasets_vlm02", "datasets_vlm")
img = Image.open(path).convert("RGB")
assert img.width > 8 and img.height > 8 and 0.1 < img.width / img.height < 10
return img
def _process_image(self, img):
img = crop2square(img) if self.crop_image else img.resize((max(img.size),) * 2)
img = img.resize((self.image_size, self.image_size))
px = torch.from_numpy(np.array(img)).float() / 255.
px = 2 * px - 1
return rearrange(px, "h w c -> c h w")
# --- REFACTORED: This method now only prepares the raw prompt text ---
def _prepare_prompt_text(self, raw_text: str):
"""Cleans text and handles unconditional generation."""
for bad_token in ["[IMAGE]", "<image_placeholder>", "<image_plaeholder>", "<image>"]:
txt = raw_text.replace(bad_token, "")
txt = txt.strip()
if random.random() < self.unconditional:
txt = "Edit this image."
return txt
def _retry(self):
return self.__getitem__(random.randrange(len(self)))
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
try:
sample = self.data_list[idx]
src_path, tgt_path = map(self._add_prefix, [sample["images"][0], sample["image"]])
src_img, tgt_img = map(self._read_image, [src_path, tgt_path])
px_src, px_tgt = map(self._process_image, [src_img, tgt_img])
# --- MODIFIED: Call the unified encode_fn ---
# 1. Prepare the raw prompt string
prompt_text = self._prepare_prompt_text(sample[self.cap_source])
# 2. Delegate all encoding and formatting to encode_fn
encoded_text = encode_fn(
example=prompt_text,
tokenizer=self.tokenizer,
prompt_template=self.prompt_template,
max_length=self.max_length,
image_length=self.image_token_repeat,
image_token_idx=self.image_token_idx
)
return {
"pixel_values_src": px_src,
"pixel_values": px_tgt,
"input_ids": torch.tensor(encoded_text["input_ids"], dtype=torch.long),
"attention_mask": torch.tensor(encoded_text["attention_mask"], dtype=torch.long),
"type": "image_edit",
}
except Exception as e:
print(f"[ImageEditJSONLDataset] Error @ {idx}: {e} from {self.data_path}")
return self._retry()