Spaces:
Sleeping
Sleeping
File size: 22,504 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f b3a7bc5 a668c60 7779082 4d6ad08 5ed7a35 d89b25e 4d6ad08 c1ec90a 3880120 c1ec90a 3880120 d89b25e 2ada372 ebfd0a7 d89b25e 10e9b7d d59f015 e80aab9 3db6293 e80aab9 5ed7a35 a668c60 841fd83 a668c60 5ed7a35 31243f4 d59f015 c1ec90a 31243f4 c1ec90a e6d375c f9b23bf c1ec90a e6d375c a668c60 59b7907 2007a57 a668c60 31243f4 3e3aa16 a668c60 3e3aa16 a668c60 4021bf3 c1ec90a a668c60 0f0d8e6 d34c06c a668c60 d34c06c a668c60 d34c06c a668c60 d34c06c a668c60 d34c06c a668c60 2cc17eb a668c60 0f0d8e6 c1ec90a 0f0d8e6 a668c60 841fd83 a668c60 e913a60 a668c60 0f0d8e6 e913a60 0f0d8e6 a668c60 e913a60 a668c60 0f0d8e6 a668c60 e913a60 a668c60 0f0d8e6 e913a60 c1ec90a a983eab a668c60 f350798 3e3aa16 a668c60 f350798 a983eab a668c60 f350798 e913a60 f350798 3e3aa16 e913a60 e7d370f 841fd83 e7d370f d09b9c4 7119427 d09b9c4 59b7907 841fd83 f350798 a668c60 c1ec90a 0f0d8e6 3e3aa16 d89b25e 3880120 f9b23bf b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 c1ec90a b177367 31243f4 12c5c93 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f c1ec90a 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 c1ec90a b177367 7d65c66 3c4371f c1ec90a 31243f4 7d65c66 5ed7a35 31243f4 7d65c66 31243f4 3c4371f 31243f4 c1ec90a b177367 7d65c66 3c4371f 31243f4 e80aab9 c1ec90a 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 c1ec90a e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import smolagents
import traceback
from smolagents import DuckDuckGoSearchTool, VisitWebpageTool
import time
from functools import lru_cache
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
from youtube_transcript_api import YouTubeTranscriptApi
import re
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GOOGLE_API_KEY)
class YouTubeVideoTool:
def __init__(self):
self.name = "youtube_video_tool"
def __call__(self, query):
"""
Extract information from a YouTube video.
Args:
query: Either a YouTube URL or video ID
Returns:
String with the transcript of the video
"""
try:
# Extract video ID from URL if needed
video_id = self._extract_video_id(query)
if not video_id:
return "Could not extract a valid YouTube video ID"
# Get the transcript
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
# Combine the transcript text
transcript_text = " ".join([item['text'] for item in transcript_list])
return f"Transcript from YouTube video {video_id}:\n{transcript_text}"
except Exception as e:
return f"Error processing YouTube video: {str(e)}"
def _extract_video_id(self, url_or_id):
"""Extract YouTube video ID from various URL formats or return the ID if already provided."""
# Handle direct video ID
if len(url_or_id) == 11 and re.match(r'^[A-Za-z0-9_-]{11}$', url_or_id):
return url_or_id
# Common YouTube URL patterns
patterns = [
r'(?:youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/embed\/|youtube\.com\/v\/)([A-Za-z0-9_-]{11})',
r'youtube\.com\/watch\?.*v=([A-Za-z0-9_-]{11})',
r'youtube\.com\/shorts\/([A-Za-z0-9_-]{11})'
]
for pattern in patterns:
match = re.search(pattern, url_or_id)
if match:
return match.group(1)
return None
# TOOLS
search_tool = DuckDuckGoSearchTool()
visit_webpage = VisitWebpageTool()
youtube_tool = YouTubeVideoTool()
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Cache Wrapper
@lru_cache(maxsize=100)
def cached_search(query):
try:
print(f"Performing search for: {query[:50000]}...")
result = search_tool(query)
print(f"Search successful, returned {len(result)} characters")
return result
except Exception as e:
print(f"Search error: {str(e)}")
return f"Search error: {str(e)}"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self, model=None, tools=None):
self.model = model
self.tools = tools if tools is not None else []
self.history = []
print(f"BasicAgent initialized with model: {model} and {len(self.tools)} tools.")
if self.model and self.model.startswith('gemini'):
try:
self._init_gemini_model()
print("Successfully initialized Gemini model")
except Exception as e:
print(f"Error initializing Gemini model: {e}")
print("Will try again when needed")
self.gemini_model = None
else:
self.gemini_model = None
def _init_gemini_model(self):
"""Initialize the Gemini model with appropriate settings"""
generation_config = {
"temperature": 0.2,
"top_p": 0.8,
"top_k": 30,
"max_output_tokens": 300000,
}
safety_settings = {
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
}
model_name = "gemini-pro"
if "gemini-2.0" in self.model:
model_name = "gemini-1.5-pro"
self.gemini_model = genai.GenerativeModel(
model_name=model_name,
generation_config=generation_config,
safety_settings=safety_settings
)
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:500]}...")
try:
final_answer = self.process_question(question)
print(f"Agent returning answer: {final_answer[:500]}...")
return final_answer
except Exception as e:
print(f"Agent error: {str(e)}")
traceback.print_exc()
return f"I apologize, but I encountered an error while processing your question. Error: {str(e)}"
def process_question(self, question: str) -> str:
try:
# Check if this is a request about a YouTube video
youtube_patterns = ["youtube.com", "youtu.be", "watch youtube", "youtube video"]
use_youtube_tool = any(pattern in question.lower() for pattern in youtube_patterns)
search_results = ""
youtube_info = ""
# Step 1: Gather information
if use_youtube_tool and any(isinstance(tool, YouTubeVideoTool) for tool in self.tools):
# Extract potential YouTube URL or ID
url_match = re.search(r'(?:https?:\/\/)?(?:www\.)?(?:youtube\.com|youtu\.be)\/[^\s]+', question)
youtube_url = url_match.group(0) if url_match else question
print(f"Using YouTube tool with URL: {youtube_url}")
# Use YouTube tool
youtube_tool_instance = next((tool for tool in self.tools if isinstance(tool, YouTubeVideoTool)), None)
if youtube_tool_instance:
youtube_info = youtube_tool_instance(youtube_url)
print(f"YouTube info retrieved: {len(youtube_info)} characters")
# Always search as backup or additional context
if any(isinstance(tool, DuckDuckGoSearchTool) for tool in self.tools):
search_results = cached_search(question)
print(f"Search results: {len(search_results)} characters")
# Determine what information to use
if youtube_info and "Error processing YouTube video" not in youtube_info:
primary_info = youtube_info
print("Using YouTube info as primary source")
else:
primary_info = search_results
print("Using search results as primary source")
# Extract key information
relevant_info = self._extract_key_info(primary_info, question)
print(f"Extracted relevant info: {len(relevant_info)} characters")
# Formulate an answer
return self._formulate_direct_answer(relevant_info, question)
except Exception as e:
print(f"Error in process_question: {str(e)}")
traceback.print_exc()
if "too many requests" in str(e).lower():
time.sleep(2)
try:
search_results = cached_search(question)
relevant_info = self._extract_key_info(search_results, question)
return self._formulate_direct_answer(relevant_info, question)
except Exception as retry_error:
print(f"Error in retry: {str(retry_error)}")
return self._get_fallback_answer(question)
return self._get_fallback_answer(question)
def _extract_key_info(self, search_results, question):
# Basic check for empty results
if not search_results or len(search_results) < 15:
return "No relevant information found."
# For YouTube transcripts, extract the most relevant portion
if "Transcript from YouTube video" in search_results:
# Split by sentences but keep limited context
max_chars = 30000 # Keep a reasonable chunk size
if len(search_results) > max_chars:
# Take a portion from the middle of the transcript for better relevance
start_idx = search_results.find("\n") + 1 # Skip the first line which is the header
# Get content chunk
return search_results[start_idx:start_idx+max_chars]
return search_results
# For search results
# Split results into sentences and find most relevant
sentences = search_results.split('. ')
if len(sentences) <= 2000:
return search_results[:50000]
# Try to find sentences with keywords from question
keywords = [w for w in question.lower().split() if len(w) > 2]
relevant_sentences = [] # NEW LINE
for sentence in sentences:
sentence_lower = sentence.lower()
if any(keyword in sentence_lower for keyword in keywords):
relevant_sentences.append(sentence)
if len(relevant_sentences) >= 10000:
break
# If we found relevant sentences, use them
if relevant_sentences:
return '. '.join(relevant_sentences)
# Fallback to first few sentences
return '. '.join(sentences[:10000])
def _formulate_direct_answer(self, relevant_info, question):
if not self.model:
return f"{relevant_info}"
if self.model.startswith('gemini'):
try:
if not hasattr(self, 'gemini_model') or self.gemini_model is None:
self._init_gemini_model()
prompt = f"""
You: You are a general AI assistant. I will ask you a question. Finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Instructions:
1. Read the question and think about what you need to answer it. Stick to the question. If you need search results, use the search results. If not, just answer the question directly and ignore the search results. Do not use search results if you can answer the question without using them.
2. If the question is not comprehensible, try reading each letter backwards, from the last character in the last word, to the first letter of the first word. Read carefully, all the way to the very beginning of the question. The text may be an instruction. Think about the instruction and follow it before providing the final answer. Don't provide comments.
3. If the question is still not comprehensible, try seeing if it is in another language.
4. Think about whether you need to elaborate on the information. For example, if you know that John and Jane are kids of Joan, you know Joan has at least two kids. In other words, if you don't have a number that is asked of you, see if you can count to produce an answer. Once you have counted, just answer the number. Be succinct, coesive, I would even say tight in your answers. If the question asks "how many?", just reply back the number that answers. In the example I just gave, you would answer: "FINAL ANSWER: Two".
5. Provide a direct answer.
6. If the information doesn't contain the answer, say so honestly.
7. Do not invent anything. You can apply method to elaborate, but based on facts. Do not provide comments. Just the raw answer.
8. Format your response as a direct answer. For example, if you are asked the year in which World War II began, just reply: "FINAL ANSWER: 1939".
9. Think thoroughly, but do not include your thoughts in your response. Only the final answer can be in your response.
Question: {question}
Relevant information: {relevant_info}
"""
response = self.gemini_model.generate_content(prompt)
if response and hasattr(response, 'text'):
return response.text
else:
print("Gemini response was empty or invalid")
return f"Based on the information: {relevant_info[:200]}..."
except Exception as e:
print(f"Error using Gemini model: {e}")
traceback.print_exc()
return f"Based on the search: {relevant_info[:200]}..."
return f"Based on the information: {relevant_info[:200]}..."
def _get_fallback_answer(self, question):
return f"I cannot provide a specific answer to your question about {question.split()[0:3]}..."
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent(model= 'gemini/gemini-2.0-flash-exp', tools=[search_tool, visit_webpage, youtube_tool])
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for idx, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
if idx % 5 == 0 and idx > 0: # Added: Add delay every 5 questions
time.sleep(1) # Wait 1 second between batches to avoid rate limiting
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |