drawing / app.py
englissi's picture
Update app.py
8e3153b verified
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # ์‚ฌ์šฉํ•˜๋ ค๋Š” ๋ชจ๋ธ ์ด๋ฆ„
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ํ…์ŠคํŠธ-์ด๋ฏธ์ง€ ์ƒ์„ฑ Gradio ํ…œํ”Œ๋ฆฟ")
with gr.Row():
prompt = gr.Text(
label="ํ”„๋กฌํ”„ํŠธ",
show_label=False,
max_lines=1,
placeholder="์ƒ์„ฑํ•˜๊ณ  ์‹ถ์€ ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
container=False,
)
run_button = gr.Button("์‹คํ–‰", scale=0, variant="primary")
result = gr.Image(label="๊ฒฐ๊ณผ", show_label=False)
with gr.Accordion("๊ณ ๊ธ‰ ์„ค์ •", open=False):
negative_prompt = gr.Text(
label="๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ",
max_lines=1,
placeholder="ํฌํ•จํ•˜์ง€ ์•Š์„ ๋‚ด์šฉ์„ ์ž…๋ ฅํ•˜์„ธ์š”",
visible=False,
)
seed = gr.Slider(
label="์‹œ๋“œ ๊ฐ’",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="์‹œ๋“œ ๋žœ๋คํ™”", value=True)
with gr.Row():
width = gr.Slider(
label="๋„ˆ๋น„ (ํ”ฝ์…€)",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
)
height = gr.Slider(
label="๋†’์ด (ํ”ฝ์…€)",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
)
with gr.Row():
guidance_scale = gr.Slider(
label="๊ฐ€์ด๋˜์Šค ์Šค์ผ€์ผ",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0, # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
)
num_inference_steps = gr.Slider(
label="์ถ”๋ก  ๋‹จ๊ณ„ ์ˆ˜",
minimum=1,
maximum=50,
step=1,
value=2, # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()