SmartReview / app.py
entropy25's picture
Create app.py
38f2ab8 verified
raw
history blame
18.6 kB
import gradio as gr
import pandas as pd
import numpy as np
import json
import re
from datetime import datetime
from typing import List, Dict, Tuple
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import sqlite3
import hashlib
import time
# Initialize models
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
class ReviewAnalyzer:
def __init__(self):
self.db_path = "reviews.db"
self._init_db()
def _init_db(self):
conn = sqlite3.connect(self.db_path)
conn.execute('''
CREATE TABLE IF NOT EXISTS usage_log (
id INTEGER PRIMARY KEY,
user_id TEXT,
timestamp DATETIME,
analysis_type TEXT,
items_count INTEGER
)
''')
conn.close()
def preprocess_text(self, text: str) -> str:
"""Clean and preprocess review text"""
text = re.sub(r'http\S+', '', text) # Remove URLs
text = re.sub(r'[^\w\s]', '', text) # Remove special chars
text = text.strip().lower()
return text
def analyze_sentiment(self, reviews: List[str]) -> Dict:
"""Analyze sentiment of reviews"""
results = []
sentiments = {'positive': 0, 'negative': 0, 'neutral': 0}
for review in reviews:
if not review.strip():
continue
clean_review = self.preprocess_text(review)
result = sentiment_analyzer(clean_review)[0]
label = result['label'].lower()
score = result['score']
# Map labels to standard format
if 'pos' in label:
sentiment = 'positive'
elif 'neg' in label:
sentiment = 'negative'
else:
sentiment = 'neutral'
sentiments[sentiment] += 1
results.append({
'text': review[:100] + '...' if len(review) > 100 else review,
'sentiment': sentiment,
'confidence': round(score, 3)
})
total = len(results)
sentiment_percentages = {k: round(v/total*100, 1) for k, v in sentiments.items()}
return {
'summary': sentiment_percentages,
'details': results,
'total_reviews': total
}
def detect_fake_reviews(self, reviews: List[str]) -> Dict:
"""Detect potentially fake reviews"""
fake_scores = []
for review in reviews:
if not review.strip():
continue
# Simple fake detection heuristics
score = 0
# Length check
if len(review) < 20:
score += 0.3
# Repetitive words
words = review.lower().split()
unique_ratio = len(set(words)) / len(words) if words else 0
if unique_ratio < 0.5:
score += 0.4
# Excessive punctuation
punct_ratio = len(re.findall(r'[!?.]', review)) / len(review) if review else 0
if punct_ratio > 0.1:
score += 0.2
# Generic phrases
generic_phrases = ['amazing', 'perfect', 'best ever', 'highly recommend']
if any(phrase in review.lower() for phrase in generic_phrases):
score += 0.1
fake_scores.append({
'text': review[:100] + '...' if len(review) > 100 else review,
'fake_probability': min(round(score, 3), 1.0),
'status': 'suspicious' if score > 0.5 else 'authentic'
})
suspicious_count = sum(1 for item in fake_scores if item['fake_probability'] > 0.5)
return {
'summary': {
'total_reviews': len(fake_scores),
'suspicious_reviews': suspicious_count,
'authenticity_rate': round((len(fake_scores) - suspicious_count) / len(fake_scores) * 100, 1) if fake_scores else 0
},
'details': fake_scores
}
def assess_quality(self, reviews: List[str]) -> Dict:
"""Assess review quality"""
quality_scores = []
for review in reviews:
if not review.strip():
continue
score = 0
factors = {}
# Length factor
length_score = min(len(review) / 200, 1.0)
factors['length'] = round(length_score, 2)
score += length_score * 0.3
# Detail factor (specific words)
detail_words = ['because', 'however', 'although', 'specifically', 'particularly']
detail_score = min(sum(1 for word in detail_words if word in review.lower()) / 3, 1.0)
factors['detail'] = round(detail_score, 2)
score += detail_score * 0.3
# Structure factor
sentences = len(re.split(r'[.!?]', review))
structure_score = min(sentences / 5, 1.0)
factors['structure'] = round(structure_score, 2)
score += structure_score * 0.2
# Helpfulness factor
helpful_words = ['pros', 'cons', 'recommend', 'suggest', 'tip', 'advice']
helpful_score = min(sum(1 for word in helpful_words if word in review.lower()) / 2, 1.0)
factors['helpfulness'] = round(helpful_score, 2)
score += helpful_score * 0.2
quality_scores.append({
'text': review[:100] + '...' if len(review) > 100 else review,
'quality_score': round(score, 3),
'factors': factors,
'grade': 'A' if score > 0.8 else 'B' if score > 0.6 else 'C' if score > 0.4 else 'D'
})
avg_quality = sum(item['quality_score'] for item in quality_scores) / len(quality_scores) if quality_scores else 0
return {
'summary': {
'average_quality': round(avg_quality, 3),
'total_reviews': len(quality_scores),
'high_quality_count': sum(1 for item in quality_scores if item['quality_score'] > 0.7)
},
'details': quality_scores
}
def compare_competitors(self, product_a_reviews: List[str], product_b_reviews: List[str]) -> Tuple[Dict, go.Figure]:
"""Compare sentiment between two products"""
analysis_a = self.analyze_sentiment(product_a_reviews)
analysis_b = self.analyze_sentiment(product_b_reviews)
# Create comparison chart
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'pie'}, {'type': 'pie'}]],
subplot_titles=['Product A', 'Product B']
)
# Product A pie chart
fig.add_trace(go.Pie(
labels=list(analysis_a['summary'].keys()),
values=list(analysis_a['summary'].values()),
name="Product A"
), row=1, col=1)
# Product B pie chart
fig.add_trace(go.Pie(
labels=list(analysis_b['summary'].keys()),
values=list(analysis_b['summary'].values()),
name="Product B"
), row=1, col=2)
fig.update_layout(title_text="Sentiment Comparison")
comparison = {
'product_a': analysis_a,
'product_b': analysis_b,
'winner': 'Product A' if analysis_a['summary']['positive'] > analysis_b['summary']['positive'] else 'Product B'
}
return comparison, fig
def generate_report(self, analysis_data: Dict, report_type: str = "basic") -> str:
"""Generate analysis report"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if report_type == "sentiment":
return f"""
# Sentiment Analysis Report
Generated: {timestamp}
## Summary
- Total Reviews: {analysis_data.get('total_reviews', 0)}
- Positive: {analysis_data.get('summary', {}).get('positive', 0)}%
- Negative: {analysis_data.get('summary', {}).get('negative', 0)}%
- Neutral: {analysis_data.get('summary', {}).get('neutral', 0)}%
## Key Insights
- Overall sentiment trend: {'Positive' if analysis_data.get('summary', {}).get('positive', 0) > 50 else 'Mixed'}
- Customer satisfaction level: {'High' if analysis_data.get('summary', {}).get('positive', 0) > 70 else 'Moderate' if analysis_data.get('summary', {}).get('positive', 0) > 40 else 'Low'}
## Recommendations
- Focus on addressing negative feedback themes
- Leverage positive reviews for marketing
- Monitor sentiment trends over time
"""
elif report_type == "fake":
return f"""
# Fake Review Detection Report
Generated: {timestamp}
## Summary
- Total Reviews Analyzed: {analysis_data.get('summary', {}).get('total_reviews', 0)}
- Suspicious Reviews: {analysis_data.get('summary', {}).get('suspicious_reviews', 0)}
- Authenticity Rate: {analysis_data.get('summary', {}).get('authenticity_rate', 0)}%
## Risk Assessment
- Review Quality: {'High Risk' if analysis_data.get('summary', {}).get('authenticity_rate', 0) < 70 else 'Low Risk'}
- Recommendation: {'Investigate suspicious reviews' if analysis_data.get('summary', {}).get('suspicious_reviews', 0) > 0 else 'Reviews appear authentic'}
"""
return "Report generated successfully"
# Global analyzer instance
analyzer = ReviewAnalyzer()
def process_reviews_input(text: str) -> List[str]:
"""Process review input text into list"""
if not text.strip():
return []
# Split by lines or by common separators
reviews = []
for line in text.split('\n'):
line = line.strip()
if line and len(line) > 10: # Minimum length check
reviews.append(line)
return reviews
def sentiment_analysis_interface(reviews_text: str):
"""Interface for sentiment analysis"""
if not reviews_text.strip():
return "Please enter some reviews to analyze.", None
reviews = process_reviews_input(reviews_text)
if not reviews:
return "No valid reviews found. Please check your input.", None
try:
result = analyzer.analyze_sentiment(reviews)
# Create visualization
fig = go.Figure(data=[
go.Bar(x=list(result['summary'].keys()),
y=list(result['summary'].values()),
marker_color=['green', 'red', 'gray'])
])
fig.update_layout(title="Sentiment Distribution", yaxis_title="Percentage")
return json.dumps(result, indent=2), fig
except Exception as e:
return f"Error: {str(e)}", None
def fake_detection_interface(reviews_text: str):
"""Interface for fake review detection"""
if not reviews_text.strip():
return "Please enter some reviews to analyze."
reviews = process_reviews_input(reviews_text)
if not reviews:
return "No valid reviews found. Please check your input."
try:
result = analyzer.detect_fake_reviews(reviews)
return json.dumps(result, indent=2)
except Exception as e:
return f"Error: {str(e)}"
def quality_assessment_interface(reviews_text: str):
"""Interface for quality assessment"""
if not reviews_text.strip():
return "Please enter some reviews to analyze."
reviews = process_reviews_input(reviews_text)
if not reviews:
return "No valid reviews found. Please check your input."
try:
result = analyzer.assess_quality(reviews)
return json.dumps(result, indent=2)
except Exception as e:
return f"Error: {str(e)}"
def competitor_comparison_interface(product_a_text: str, product_b_text: str):
"""Interface for competitor comparison"""
if not product_a_text.strip() or not product_b_text.strip():
return "Please enter reviews for both products.", None
reviews_a = process_reviews_input(product_a_text)
reviews_b = process_reviews_input(product_b_text)
if not reviews_a or not reviews_b:
return "Please provide valid reviews for both products.", None
try:
result, fig = analyzer.compare_competitors(reviews_a, reviews_b)
return json.dumps(result, indent=2), fig
except Exception as e:
return f"Error: {str(e)}", None
def generate_report_interface(analysis_result: str, report_type: str):
"""Interface for report generation"""
if not analysis_result.strip():
return "No analysis data available. Please run an analysis first."
try:
data = json.loads(analysis_result)
report = analyzer.generate_report(data, report_type.lower())
return report
except Exception as e:
return f"Error generating report: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="SmartReview Pro", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ›’ SmartReview Pro")
gr.Markdown("Professional review analysis platform for e-commerce businesses")
with gr.Tab("πŸ“Š Sentiment Analysis"):
gr.Markdown("### Analyze customer sentiment from reviews")
with gr.Row():
with gr.Column():
sentiment_input = gr.Textbox(
lines=10,
placeholder="Enter reviews (one per line):\nGreat product, love it!\nTerrible quality, waste of money.\nOkay product, nothing special.",
label="Reviews"
)
sentiment_btn = gr.Button("Analyze Sentiment", variant="primary")
with gr.Column():
sentiment_output = gr.Textbox(label="Analysis Results", lines=15)
sentiment_chart = gr.Plot(label="Sentiment Distribution")
sentiment_btn.click(
sentiment_analysis_interface,
inputs=[sentiment_input],
outputs=[sentiment_output, sentiment_chart]
)
with gr.Tab("πŸ” Fake Review Detection"):
gr.Markdown("### Detect potentially fake or suspicious reviews")
with gr.Row():
with gr.Column():
fake_input = gr.Textbox(
lines=10,
placeholder="Enter reviews to check for authenticity...",
label="Reviews"
)
fake_btn = gr.Button("Detect Fake Reviews", variant="primary")
with gr.Column():
fake_output = gr.Textbox(label="Detection Results", lines=15)
fake_btn.click(
fake_detection_interface,
inputs=[fake_input],
outputs=[fake_output]
)
with gr.Tab("⭐ Quality Assessment"):
gr.Markdown("### Assess the quality and helpfulness of reviews")
with gr.Row():
with gr.Column():
quality_input = gr.Textbox(
lines=10,
placeholder="Enter reviews to assess quality...",
label="Reviews"
)
quality_btn = gr.Button("Assess Quality", variant="primary")
with gr.Column():
quality_output = gr.Textbox(label="Quality Assessment", lines=15)
quality_btn.click(
quality_assessment_interface,
inputs=[quality_input],
outputs=[quality_output]
)
with gr.Tab("πŸ†š Competitor Comparison"):
gr.Markdown("### Compare sentiment between competing products")
with gr.Row():
with gr.Column():
comp_product_a = gr.Textbox(
lines=8,
placeholder="Product A reviews...",
label="Product A Reviews"
)
comp_product_b = gr.Textbox(
lines=8,
placeholder="Product B reviews...",
label="Product B Reviews"
)
comp_btn = gr.Button("Compare Products", variant="primary")
with gr.Column():
comp_output = gr.Textbox(label="Comparison Results", lines=15)
comp_chart = gr.Plot(label="Comparison Chart")
comp_btn.click(
competitor_comparison_interface,
inputs=[comp_product_a, comp_product_b],
outputs=[comp_output, comp_chart]
)
with gr.Tab("πŸ“‹ Report Generation"):
gr.Markdown("### Generate professional analysis reports")
with gr.Row():
with gr.Column():
report_data = gr.Textbox(
lines=10,
placeholder="Paste analysis results here...",
label="Analysis Data (JSON)"
)
report_type = gr.Dropdown(
choices=["sentiment", "fake", "quality"],
value="sentiment",
label="Report Type"
)
report_btn = gr.Button("Generate Report", variant="primary")
with gr.Column():
report_output = gr.Textbox(label="Generated Report", lines=15)
report_btn.click(
generate_report_interface,
inputs=[report_data, report_type],
outputs=[report_output]
)
with gr.Tab("ℹ️ About"):
gr.Markdown("""
## SmartReview Pro Features
- **Sentiment Analysis**: Analyze customer emotions and opinions
- **Fake Review Detection**: Identify suspicious or inauthentic reviews
- **Quality Assessment**: Evaluate review helpfulness and detail
- **Competitor Comparison**: Compare sentiment across products
- **Professional Reports**: Generate detailed analysis reports
## Pricing Plans
- **Free**: 10 analyses per day
- **Pro ($299/month)**: 1000 analyses per day + advanced features
- **Enterprise**: Unlimited usage + API access + custom reports
Contact us for enterprise solutions and custom integrations.
""")
if __name__ == "__main__":
demo.launch()