File size: 37,733 Bytes
4e25610
 
0c511f2
75cb992
 
 
4e25610
d3eb8f6
4e25610
 
 
 
 
 
 
 
a58e3ae
4e25610
a58e3ae
 
 
0c511f2
061ab6f
4e25610
 
 
a58e3ae
 
4e25610
a58e3ae
 
 
4e25610
0c511f2
 
 
 
 
 
 
 
 
 
75cb992
4e25610
0c511f2
75cb992
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
0c511f2
 
 
 
 
4e25610
 
 
d3eb8f6
 
a58e3ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c511f2
4e25610
75cb992
a58e3ae
0c511f2
 
 
 
a58e3ae
 
 
 
 
 
0c511f2
 
 
 
 
75cb992
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cb992
 
 
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
0c511f2
a58e3ae
75cb992
a58e3ae
 
0c511f2
 
 
 
 
4e25610
 
0c511f2
4e25610
 
 
a58e3ae
0c511f2
4e25610
 
 
a58e3ae
4e25610
 
 
 
 
 
 
a58e3ae
 
4e25610
0c511f2
a58e3ae
0c511f2
a58e3ae
 
0c511f2
4e25610
0c511f2
 
061ab6f
0c511f2
061ab6f
0c511f2
 
 
 
061ab6f
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061ab6f
0c511f2
 
 
061ab6f
0c511f2
 
 
061ab6f
0c511f2
 
 
061ab6f
 
0c511f2
 
 
061ab6f
 
0c511f2
 
061ab6f
0c511f2
 
 
061ab6f
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061ab6f
0c511f2
 
061ab6f
0c511f2
 
061ab6f
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061ab6f
0c511f2
 
 
 
 
061ab6f
0c511f2
 
 
 
75cb992
0c511f2
 
 
 
 
a58e3ae
be7d5b2
a58e3ae
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cb992
 
0c511f2
 
 
 
 
 
 
75cb992
 
 
 
0c511f2
75cb992
0c511f2
 
 
75cb992
 
 
 
a58e3ae
 
 
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cb992
 
0c511f2
 
75cb992
 
 
a58e3ae
d3eb8f6
a58e3ae
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cb992
 
0c511f2
 
 
 
 
 
75cb992
 
 
be7d5b2
71b3ce2
a58e3ae
0c511f2
 
 
 
75cb992
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cb992
 
 
0c511f2
 
75cb992
 
0c511f2
 
 
 
75cb992
 
0c511f2
 
 
75cb992
 
0c511f2
 
75cb992
 
 
0c511f2
 
75cb992
0c511f2
75cb992
 
 
0c511f2
 
 
 
 
 
 
75cb992
0c511f2
 
 
75cb992
 
 
0c511f2
 
 
 
 
 
 
 
75cb992
 
 
4e25610
0c511f2
a58e3ae
0c511f2
a58e3ae
 
 
 
0c511f2
a58e3ae
 
 
 
 
 
 
 
0c511f2
a58e3ae
 
 
 
 
 
 
 
0c511f2
 
 
a58e3ae
 
 
 
 
 
 
 
 
 
0c511f2
a58e3ae
 
0c511f2
a58e3ae
 
 
0c511f2
a58e3ae
 
 
0c511f2
a58e3ae
 
 
 
0c511f2
a58e3ae
 
0c511f2
 
a58e3ae
 
 
 
 
 
 
 
 
0c511f2
a58e3ae
0c511f2
a58e3ae
 
 
 
 
 
75cb992
a58e3ae
0c511f2
 
 
 
 
a58e3ae
 
0c511f2
 
 
4e25610
0c511f2
866f669
0c511f2
866f669
0c511f2
 
 
 
 
 
75cb992
0c511f2
 
75cb992
0c511f2
 
 
 
75cb992
0c511f2
 
 
 
 
75cb992
0c511f2
 
 
 
 
 
 
75cb992
0c511f2
 
 
75cb992
0c511f2
75cb992
0c511f2
 
 
061ab6f
0c511f2
 
 
061ab6f
75cb992
 
0c511f2
75cb992
 
 
866f669
a58e3ae
866f669
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cb992
0c511f2
75cb992
0c511f2
75cb992
 
0c511f2
 
 
75cb992
 
 
 
 
0c511f2
 
75cb992
 
 
0c511f2
 
 
 
 
 
 
 
 
 
 
 
75cb992
 
 
 
 
 
 
 
 
 
0c511f2
75cb992
 
 
0c511f2
75cb992
 
0c511f2
 
75cb992
 
0c511f2
 
a58e3ae
 
 
 
0c511f2
a58e3ae
0c511f2
 
 
be7d5b2
 
a58e3ae
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
0c511f2
a58e3ae
0c511f2
a58e3ae
0c511f2
 
 
c74121f
75cb992
0c511f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
 
0c511f2
 
061ab6f
 
0c511f2
 
 
75cb992
 
4e25610
0c511f2
 
 
 
a58e3ae
4e25610
0c511f2
 
 
 
75cb992
 
0c511f2
a58e3ae
 
 
866f669
a58e3ae
0c511f2
a58e3ae
 
 
0c511f2
a58e3ae
0c511f2
a58e3ae
 
0c511f2
a58e3ae
0c511f2
a58e3ae
4e25610
a58e3ae
4e25610
a58e3ae
4e25610
0c511f2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import numpy as np
from wordcloud import WordCloud
from collections import Counter, defaultdict
import re
import json
import csv
import io
import tempfile
from datetime import datetime
import logging
from functools import lru_cache, wraps
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple, Any, Callable
from contextlib import contextmanager
import gc
import base64

# Configuration
@dataclass
class Config:
    MAX_HISTORY_SIZE: int = 1000
    BATCH_SIZE_LIMIT: int = 50
    MAX_TEXT_LENGTH: int = 512
    MIN_WORD_LENGTH: int = 2
    CACHE_SIZE: int = 128
    BATCH_PROCESSING_SIZE: int = 8
    
    # Visualization settings
    FIGURE_WIDTH: int = 800
    FIGURE_HEIGHT: int = 500
    WORDCLOUD_SIZE: Tuple[int, int] = (800, 400)
    
    THEMES = {
        'default': {'pos': '#4ecdc4', 'neg': '#ff6b6b'},
        'ocean': {'pos': '#0077be', 'neg': '#ff6b35'},
        'forest': {'pos': '#228b22', 'neg': '#dc143c'},
        'sunset': {'pos': '#ff8c00', 'neg': '#8b0000'}
    }
    
    # Multi-language models
    MODELS = {
        'multilingual': {
            'name': 'cardiffnlp/twitter-xlm-roberta-base-sentiment',
            'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
        },
        'english': {
            'name': 'cardiffnlp/twitter-roberta-base-sentiment-latest',
            'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
        },
        'chinese': {
            'name': 'uer/roberta-base-finetuned-chinanews-chinese',
            'labels': ['NEGATIVE', 'POSITIVE']
        },
        'spanish': {
            'name': 'finiteautomata/beto-sentiment-analysis',
            'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
        },
        'french': {
            'name': 'tblard/tf-allocine',
            'labels': ['NEGATIVE', 'POSITIVE']
        }
    }
    
    STOP_WORDS = {
        'en': {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'have', 'has', 'had', 'will', 'would', 'could', 'should'},
        'zh': {'的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个', '上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看'},
        'es': {'el', 'la', 'de', 'que', 'y', 'a', 'en', 'un', 'es', 'se', 'no', 'te', 'lo', 'le', 'da', 'su', 'por', 'son', 'con', 'para', 'al', 'del', 'los', 'las'},
        'fr': {'le', 'la', 'les', 'de', 'un', 'une', 'du', 'des', 'et', 'à', 'ce', 'il', 'que', 'qui', 'ne', 'se', 'pas', 'tout', 'être', 'avoir', 'sur', 'avec', 'par'},
    }

config = Config()
logger = logging.getLogger(__name__)

# Decorators and Context Managers
def handle_errors(default_return=None):
    """Centralized error handling decorator"""
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def wrapper(*args, **kwargs):
            try:
                return func(*args, **kwargs)
            except Exception as e:
                logger.error(f"{func.__name__} failed: {e}")
                return default_return if default_return is not None else f"Error: {str(e)}"
        return wrapper
    return decorator

class ThemeContext:
    """Theme management context"""
    def __init__(self, theme: str = 'default'):
        self.theme = theme
        self.colors = config.THEMES.get(theme, config.THEMES['default'])

# Enhanced Model Manager for Multi-language Support
class ModelManager:
    """Multi-language model manager with lazy loading"""
    _instance = None
    _models = {}
    _tokenizers = {}
    _pipelines = {}
    _device = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance
    
    @property
    def device(self):
        if self._device is None:
            self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        return self._device
    
    def get_pipeline(self, model_key: str = 'multilingual'):
        """Get or create sentiment analysis pipeline for specified model"""
        if model_key not in self._pipelines:
            try:
                model_config = config.MODELS[model_key]
                self._pipelines[model_key] = pipeline(
                    "sentiment-analysis",
                    model=model_config['name'],
                    tokenizer=model_config['name'],
                    device=0 if torch.cuda.is_available() else -1,
                    top_k=None
                )
                logger.info(f"Model {model_key} loaded successfully")
            except Exception as e:
                logger.error(f"Failed to load model {model_key}: {e}")
                # Fallback to multilingual model
                if model_key != 'multilingual':
                    return self.get_pipeline('multilingual')
                raise
        return self._pipelines[model_key]
    
    def get_model_and_tokenizer(self, model_key: str = 'multilingual'):
        """Get model and tokenizer for attention extraction"""
        if model_key not in self._models:
            try:
                model_config = config.MODELS[model_key]
                self._tokenizers[model_key] = AutoTokenizer.from_pretrained(model_config['name'])
                self._models[model_key] = AutoModelForSequenceClassification.from_pretrained(model_config['name'])
                self._models[model_key].to(self.device)
                logger.info(f"Model and tokenizer {model_key} loaded for attention extraction")
            except Exception as e:
                logger.error(f"Failed to load model/tokenizer {model_key}: {e}")
                if model_key != 'multilingual':
                    return self.get_model_and_tokenizer('multilingual')
                raise
        return self._models[model_key], self._tokenizers[model_key]

# Language Detection
class LanguageDetector:
    """Simple language detection based on character patterns"""
    
    @staticmethod
    def detect_language(text: str) -> str:
        """Detect language based on character patterns"""
        # Chinese characters
        if re.search(r'[\u4e00-\u9fff]', text):
            return 'chinese'
        # Spanish patterns
        elif re.search(r'[ñáéíóúü]', text.lower()):
            return 'spanish'
        # French patterns
        elif re.search(r'[àâäçéèêëïîôùûüÿ]', text.lower()):
            return 'french'
        # Default to English/Multilingual
        else:
            return 'multilingual'

# Simplified Core Classes
class TextProcessor:
    """Optimized text processing with multi-language support"""
    @staticmethod
    @lru_cache(maxsize=config.CACHE_SIZE)
    def clean_text(text: str, language: str = 'en') -> Tuple[str, ...]:
        """Single-pass text cleaning with language-specific stop words"""
        words = re.findall(r'\b\w{2,}\b', text.lower())
        stop_words = config.STOP_WORDS.get(language, config.STOP_WORDS['en'])
        return tuple(w for w in words if w not in stop_words and len(w) >= config.MIN_WORD_LENGTH)

class HistoryManager:
    """Simplified history management"""
    def __init__(self):
        self._history = []
    
    def add(self, entry: Dict):
        self._history.append({**entry, 'timestamp': datetime.now().isoformat()})
        if len(self._history) > config.MAX_HISTORY_SIZE:
            self._history = self._history[-config.MAX_HISTORY_SIZE:]
    
    def get_all(self) -> List[Dict]:
        return self._history.copy()
    
    def clear(self) -> int:
        count = len(self._history)
        self._history.clear()
        return count
    
    def size(self) -> int:
        return len(self._history)

# Core Analysis Engine with Multi-language Support
class SentimentEngine:
    """Multi-language sentiment analysis with attention-based keyword extraction"""
    def __init__(self):
        self.model_manager = ModelManager()
        self.language_detector = LanguageDetector()
    
    def extract_key_words(self, text: str, model_key: str = 'multilingual', top_k: int = 10) -> List[Tuple[str, float]]:
        """Extract contributing words using attention weights"""
        try:
            model, tokenizer = self.model_manager.get_model_and_tokenizer(model_key)
            
            inputs = tokenizer(
                text, return_tensors="pt", padding=True, 
                truncation=True, max_length=config.MAX_TEXT_LENGTH
            ).to(self.model_manager.device)
            
            # Get model outputs with attention weights
            with torch.no_grad():
                outputs = model(**inputs, output_attentions=True)
                attention = outputs.attentions
                
                # Use the last layer's attention, average over all heads
                last_attention = attention[-1]
                avg_attention = last_attention.mean(dim=1)
                
                # Focus on attention to [CLS] token
                cls_attention = avg_attention[0, 0, :]
                
            # Get tokens and their attention scores
            tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
            attention_scores = cls_attention.cpu().numpy()
            
            # Filter out special tokens and combine subword tokens
            word_scores = {}
            current_word = ""
            current_score = 0.0
            
            for i, (token, score) in enumerate(zip(tokens, attention_scores)):
                if token in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>', '<pad>']:
                    continue
                    
                if token.startswith('##') or token.startswith('▁'):
                    # Subword token
                    current_word += token[2:] if token.startswith('##') else token[1:]
                    current_score = max(current_score, score)
                else:
                    # New word, save previous if exists
                    if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
                        word_scores[current_word.lower()] = current_score
                    
                    current_word = token
                    current_score = score
            
            # Don't forget the last word
            if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
                word_scores[current_word.lower()] = current_score
            
            # Filter out stop words and sort by attention score
            lang_code = 'zh' if model_key == 'chinese' else 'es' if model_key == 'spanish' else 'fr' if model_key == 'french' else 'en'
            stop_words = config.STOP_WORDS.get(lang_code, config.STOP_WORDS['en'])
            
            filtered_words = {
                word: score for word, score in word_scores.items() 
                if word not in stop_words and len(word) >= config.MIN_WORD_LENGTH
            }
            
            # Sort by attention score and return top_k
            sorted_words = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
            return sorted_words[:top_k]
            
        except Exception as e:
            logger.error(f"Key word extraction failed: {e}")
            return []
    
    @handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0, 'key_words': []})
    def analyze_single(self, text: str, model_key: str = None) -> Dict:
        """Analyze single text with automatic language detection"""
        if not text.strip():
            raise ValueError("Empty text")
        
        # Auto-detect language if not specified
        if model_key is None:
            detected_lang = self.language_detector.detect_language(text)
            model_key = detected_lang if detected_lang in config.MODELS else 'multilingual'
        
        # Get sentiment analysis pipeline
        classifier = self.model_manager.get_pipeline(model_key)
        results = classifier(text)
        
        # Process results based on model output format
        if isinstance(results[0], list):
            results = results[0]
        
        # Map results to standardized format
        sentiment_map = {'POSITIVE': 'Positive', 'NEGATIVE': 'Negative', 'NEUTRAL': 'Neutral'}
        
        # Find positive and negative scores
        pos_score = 0.0
        neg_score = 0.0
        neutral_score = 0.0
        
        for result in results:
            label = result['label']
            score = result['score']
            
            if 'POSITIVE' in label:
                pos_score = score
            elif 'NEGATIVE' in label:
                neg_score = score
            elif 'NEUTRAL' in label:
                neutral_score = score
        
        # Determine final sentiment
        if pos_score > neg_score and pos_score > neutral_score:
            sentiment = 'Positive'
            confidence = pos_score
        elif neg_score > pos_score and neg_score > neutral_score:
            sentiment = 'Negative'
            confidence = neg_score
        else:
            sentiment = 'Neutral'
            confidence = neutral_score
        
        # Extract key contributing words
        key_words = self.extract_key_words(text, model_key)
        
        return {
            'sentiment': sentiment,
            'confidence': float(confidence),
            'pos_prob': float(pos_score),
            'neg_prob': float(neg_score),
            'neutral_prob': float(neutral_score),
            'key_words': key_words,
            'language': model_key
        }
    
    @handle_errors(default_return=[])
    def analyze_batch(self, texts: List[str], model_key: str = None, progress_callback=None) -> List[Dict]:
        """Optimized batch processing with key words"""
        if len(texts) > config.BATCH_SIZE_LIMIT:
            texts = texts[:config.BATCH_SIZE_LIMIT]
        
        results = []
        
        for i, text in enumerate(texts):
            if progress_callback:
                progress_callback((i + 1) / len(texts))
            
            result = self.analyze_single(text, model_key)
            result['text'] = text[:50] + '...' if len(text) > 50 else text
            result['full_text'] = text
            results.append(result)
        
        return results

# Plotly Visualization System
class PlotFactory:
    """Factory for creating Plotly visualizations"""
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_sentiment_bars(result: Dict, theme: ThemeContext) -> go.Figure:
        """Create sentiment probability bars using Plotly"""
        labels = []
        values = []
        colors = []
        
        if 'neg_prob' in result and result['neg_prob'] > 0:
            labels.append("Negative")
            values.append(result['neg_prob'])
            colors.append(theme.colors['neg'])
        
        if 'neutral_prob' in result and result['neutral_prob'] > 0:
            labels.append("Neutral")
            values.append(result['neutral_prob'])
            colors.append('#FFA500')  # Orange for neutral
        
        if 'pos_prob' in result and result['pos_prob'] > 0:
            labels.append("Positive")
            values.append(result['pos_prob'])
            colors.append(theme.colors['pos'])
        
        fig = go.Figure(data=[
            go.Bar(
                x=labels,
                y=values,
                marker_color=colors,
                text=[f'{v:.3f}' for v in values],
                textposition='auto',
            )
        ])
        
        fig.update_layout(
            title="Sentiment Probabilities",
            xaxis_title="Sentiment",
            yaxis_title="Probability",
            yaxis=dict(range=[0, 1]),
            width=config.FIGURE_WIDTH,
            height=config.FIGURE_HEIGHT,
            showlegend=False
        )
        
        return fig
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_confidence_gauge(confidence: float, sentiment: str, theme: ThemeContext) -> go.Figure:
        """Create confidence gauge using Plotly"""
        color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
        
        fig = go.Figure(go.Indicator(
            mode = "gauge+number+delta",
            value = confidence,
            domain = {'x': [0, 1], 'y': [0, 1]},
            title = {'text': f"{sentiment} Confidence"},
            delta = {'reference': 0.5},
            gauge = {
                'axis': {'range': [None, 1]},
                'bar': {'color': color},
                'steps': [
                    {'range': [0, 0.5], 'color': "lightgray"},
                    {'range': [0.5, 1], 'color': "gray"}
                ],
                'threshold': {
                    'line': {'color': "red", 'width': 4},
                    'thickness': 0.75,
                    'value': 0.9
                }
            }
        ))
        
        fig.update_layout(
            width=config.FIGURE_WIDTH,
            height=config.FIGURE_HEIGHT
        )
        
        return fig
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_keyword_chart(key_words: List[Tuple[str, float]], sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
        """Create horizontal bar chart for key contributing words"""
        if not key_words:
            return None
        
        words = [word for word, score in key_words]
        scores = [score for word, score in key_words]
        
        # Choose color based on sentiment
        color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
        
        fig = go.Figure(go.Bar(
            x=scores,
            y=words,
            orientation='h',
            marker_color=color,
            text=[f'{score:.3f}' for score in scores],
            textposition='auto',
        ))
        
        fig.update_layout(
            title=f'Top Contributing Words ({sentiment})',
            xaxis_title='Attention Weight',
            yaxis_title='Words',
            width=config.FIGURE_WIDTH,
            height=config.FIGURE_HEIGHT,
            yaxis={'categoryorder': 'total ascending'}
        )
        
        return fig
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_wordcloud_plot(text: str, sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
        """Create word cloud visualization"""
        if len(text.split()) < 3:
            return None
        
        try:
            colormap = 'Greens' if sentiment == 'Positive' else 'Reds' if sentiment == 'Negative' else 'Blues'
            wc = WordCloud(
                width=config.WORDCLOUD_SIZE[0], 
                height=config.WORDCLOUD_SIZE[1], 
                background_color='white',
                colormap=colormap, 
                max_words=30
            ).generate(text)
            
            # Convert to image
            img_array = wc.to_array()
            
            fig = go.Figure()
            fig.add_trace(go.Image(z=img_array))
            fig.update_layout(
                title=f'{sentiment} Word Cloud',
                xaxis={'visible': False},
                yaxis={'visible': False},
                width=config.FIGURE_WIDTH,
                height=config.FIGURE_HEIGHT,
                margin=dict(l=0, r=0, t=30, b=0)
            )
            
            return fig
            
        except Exception as e:
            logger.error(f"Word cloud generation failed: {e}")
            return None
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_batch_analysis(results: List[Dict], theme: ThemeContext) -> go.Figure:
        """Create comprehensive batch visualization using Plotly subplots"""
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=['Sentiment Distribution', 'Confidence Distribution', 
                           'Sentiment Progression', 'Language Distribution'],
            specs=[[{"type": "pie"}, {"type": "histogram"}],
                   [{"type": "scatter", "colspan": 2}, None]]
        )
        
        # Sentiment distribution (pie chart)
        sent_counts = Counter([r['sentiment'] for r in results])
        colors_pie = [theme.colors['pos'] if s == 'Positive' else theme.colors['neg'] if s == 'Negative' else '#FFA500' for s in sent_counts.keys()]
        
        fig.add_trace(
            go.Pie(labels=list(sent_counts.keys()), values=list(sent_counts.values()),
                   marker_colors=colors_pie, name="Sentiment"),
            row=1, col=1
        )
        
        # Confidence histogram
        confs = [r['confidence'] for r in results]
        fig.add_trace(
            go.Histogram(x=confs, nbinsx=8, marker_color='skyblue', name="Confidence"),
            row=1, col=2
        )
        
        # Sentiment progression
        pos_probs = [r.get('pos_prob', 0) for r in results]
        indices = list(range(len(results)))
        colors_scatter = [theme.colors['pos'] if r['sentiment'] == 'Positive' 
                         else theme.colors['neg'] if r['sentiment'] == 'Negative' 
                         else '#FFA500' for r in results]
        
        fig.add_trace(
            go.Scatter(x=indices, y=pos_probs, mode='markers',
                      marker=dict(color=colors_scatter, size=8),
                      name="Sentiment Progression"),
            row=2, col=1
        )
        
        # Add horizontal line at 0.5
        fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=2, col=1)
        
        fig.update_layout(
            height=800,
            width=1000,
            showlegend=False,
            title_text="Batch Analysis Results"
        )
        
        return fig

# Unified Data Handler (unchanged)
class DataHandler:
    """Handles all data operations"""
    
    @staticmethod
    @handle_errors(default_return=(None, "Export failed"))
    def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
        """Universal data export"""
        if not data:
            return None, "No data to export"
        
        temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False, 
                                               suffix=f'.{format_type}', encoding='utf-8')
        
        if format_type == 'csv':
            writer = csv.writer(temp_file)
            writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Pos_Prob', 'Neg_Prob', 'Neutral_Prob', 'Language', 'Key_Words'])
            for entry in data:
                writer.writerow([
                    entry.get('timestamp', ''),
                    entry.get('text', ''),
                    entry.get('sentiment', ''),
                    f"{entry.get('confidence', 0):.4f}",
                    f"{entry.get('pos_prob', 0):.4f}",
                    f"{entry.get('neg_prob', 0):.4f}",
                    f"{entry.get('neutral_prob', 0):.4f}",
                    entry.get('language', ''),
                    "|".join([f"{word}:{score:.3f}" for word, score in entry.get('key_words', [])])
                ])
        elif format_type == 'json':
            json.dump(data, temp_file, indent=2, ensure_ascii=False)
        
        temp_file.close()
        return temp_file.name, f"Exported {len(data)} entries"
    
    @staticmethod
    @handle_errors(default_return="")
    def process_file(file) -> str:
        """Process uploaded file"""
        if not file:
            return ""
    
        content = file.read().decode('utf-8')
        
        if file.name.endswith('.csv'):
            import io
            csv_file = io.StringIO(content)
            reader = csv.reader(csv_file)
            try:
                next(reader)
                texts = []
                for row in reader:
                    if row and row[0].strip():
                        text = row[0].strip().strip('"')
                        if text:  
                            texts.append(text)
                return '\n'.join(texts)
            except Exception as e:
                lines = content.strip().split('\n')[1:] 
                texts = []
                for line in lines:
                    if line.strip():
                        text = line.strip().strip('"')
                        if text:
                            texts.append(text)
                return '\n'.join(texts)
        return content

# Main Application with Multi-language Support
class SentimentApp:
    """Main application orchestrator with multi-language support"""
    
    def __init__(self):
        self.engine = SentimentEngine()
        self.history = HistoryManager()
        self.data_handler = DataHandler()
        
        # Multi-language examples
        self.examples = [
            ["While the film's visual effects were undeniably impressive, the story lacked emotional weight, and the pacing felt inconsistent throughout."],
            ["这部电影的视觉效果令人印象深刻,但故事缺乏情感深度,节奏感也不够连贯。"],
            ["Aunque los efectos visuales de la película fueron innegablemente impresionantes, la historia carecía de peso emocional."],
            ["Bien que les effets visuels du film soient indéniablement impressionnants, l'histoire manquait de poids émotionnel."],
            ["An extraordinary achievement in filmmaking — the direction was masterful, the script was sharp, and every performance added depth and realism."]
        ]
    
    @handle_errors(default_return=("Please enter text", None, None, None, None))
    def analyze_single(self, text: str, model_key: str = 'multilingual', theme: str = 'default'):
        """Single text analysis with multi-language support"""
        if not text.strip():
            return "Please enter text", None, None, None, None
        
        result = self.engine.analyze_single(text, model_key)
        
        # Add to history
        self.history.add({
            'text': text[:100],
            'full_text': text,
            **result
        })
        
        # Create visualizations
        theme_ctx = ThemeContext(theme)
        
        prob_plot = PlotFactory.create_sentiment_bars(result, theme_ctx)
        gauge_plot = PlotFactory.create_confidence_gauge(result['confidence'], result['sentiment'], theme_ctx)
        cloud_plot = PlotFactory.create_wordcloud_plot(text, result['sentiment'], theme_ctx)
        keyword_plot = PlotFactory.create_keyword_chart(result['key_words'], result['sentiment'], theme_ctx)
        
        # Format result text with key words
        key_words_str = ", ".join([f"{word}({score:.3f})" for word, score in result['key_words'][:5]])
        result_text = (f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.3f})\n"
                      f"Language: {result['language']}\n"
                      f"Key Words: {key_words_str}")
        
        return result_text, prob_plot, gauge_plot, cloud_plot, keyword_plot
    
    @handle_errors(default_return=None)
    def analyze_batch(self, reviews: str, model_key: str = 'multilingual', progress=None):
        """Batch analysis with multi-language support"""
        if not reviews.strip():
            return None
        
        texts = [r.strip() for r in reviews.split('\n') if r.strip()]
        if len(texts) < 2:
            return None
        
        results = self.engine.analyze_batch(texts, model_key, progress)
        
        # Add to history
        for result in results:
            self.history.add(result)
        
        # Create visualization
        theme_ctx = ThemeContext('default')
        return PlotFactory.create_batch_analysis(results, theme_ctx)
    
    @handle_errors(default_return=(None, "No history available"))
    def plot_history(self, theme: str = 'default'):
        """Plot analysis history using Plotly"""
        history = self.history.get_all()
        if len(history) < 2:
            return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
        
        theme_ctx = ThemeContext(theme)
        
        # Create subplots
        fig = make_subplots(
            rows=2, cols=1,
            subplot_titles=['Sentiment History', 'Confidence Over Time'],
            vertical_spacing=0.12
        )
        
        indices = list(range(len(history)))
        pos_probs = [item.get('pos_prob', 0) for item in history]
        confs = [item['confidence'] for item in history]
        
        # Sentiment trend
        colors = [theme_ctx.colors['pos'] if p > 0.5 else theme_ctx.colors['neg'] for p in pos_probs]
        
        fig.add_trace(
            go.Scatter(
                x=indices, 
                y=pos_probs,
                mode='markers+lines',
                marker=dict(color=colors, size=8),
                line=dict(color='gray', width=2),
                name='Sentiment Trend'
            ),
            row=1, col=1
        )
        
        # Add horizontal line at 0.5
        fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=1, col=1)
        
        # Confidence trend
        fig.add_trace(
            go.Bar(
                x=indices,
                y=confs,
                marker_color='lightblue',
                marker_line_color='navy',
                marker_line_width=1,
                name='Confidence'
            ),
            row=2, col=1
        )
        
        fig.update_layout(
            height=800,
            width=1000,
            showlegend=False,
            title_text="Analysis History"
        )
        
        fig.update_xaxes(title_text="Analysis Number", row=2, col=1)
        fig.update_yaxes(title_text="Positive Probability", row=1, col=1)
        fig.update_yaxes(title_text="Confidence", row=2, col=1)
        
        return fig, f"History: {len(history)} analyses"

# Gradio Interface Setup with Multi-language Support
def create_interface():
    """Create streamlined Gradio interface with multi-language support"""
    app = SentimentApp()
    
    with gr.Blocks(theme=gr.themes.Soft(), title="Multi-language Sentiment Analyzer") as demo:
        gr.Markdown("# 🌍 AI Multi-language Sentiment Analyzer")
        gr.Markdown("Advanced sentiment analysis supporting multiple languages with Plotly visualizations and key word extraction")
        
        with gr.Tab("Single Analysis"):
            with gr.Row():
                with gr.Column():
                    text_input = gr.Textbox(
                        label="Review Text (Multiple Languages Supported)",
                        placeholder="Enter your review in any supported language...",
                        lines=5
                    )
                    with gr.Row():
                        analyze_btn = gr.Button("Analyze", variant="primary")
                        model_selector = gr.Dropdown(
                            choices=[
                                ('Auto-detect', 'multilingual'),
                                ('Multilingual', 'multilingual'),
                                ('English', 'english'),
                                ('Chinese 中文', 'chinese'),
                                ('Spanish Español', 'spanish'),
                                ('French Français', 'french')
                            ],
                            value="multilingual",
                            label="Language Model"
                        )
                        theme_selector = gr.Dropdown(
                            choices=list(config.THEMES.keys()),
                            value="default",
                            label="Theme"
                        )
                    
                    gr.Examples(
                        examples=app.examples,
                        inputs=text_input,
                        label="Multi-language Examples"
                    )
                
                with gr.Column():
                    result_output = gr.Textbox(label="Analysis Result", lines=4)
            
            with gr.Row():
                prob_plot = gr.Plot(label="Sentiment Probabilities")
                gauge_plot = gr.Plot(label="Confidence Gauge")
            
            with gr.Row():
                wordcloud_plot = gr.Plot(label="Word Cloud")
                keyword_plot = gr.Plot(label="Key Contributing Words")
        
        with gr.Tab("Batch Analysis"):
            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(label="Upload File", file_types=[".csv", ".txt"])
                    batch_input = gr.Textbox(
                        label="Reviews (one per line, mixed languages supported)",
                        lines=8,
                        placeholder="Enter multiple reviews, one per line...\nSupports mixed languages in the same batch!"
                    )
                
                with gr.Column():
                    load_btn = gr.Button("Load File")
                    with gr.Row():
                        batch_btn = gr.Button("Analyze Batch", variant="primary")
                        batch_model_selector = gr.Dropdown(
                            choices=[
                                ('Auto-detect', 'multilingual'),
                                ('Multilingual', 'multilingual'),
                                ('English', 'english'),
                                ('Chinese 中文', 'chinese'),
                                ('Spanish Español', 'spanish'),
                                ('French Français', 'french')
                            ],
                            value="multilingual",
                            label="Batch Model"
                        )
            
            batch_plot = gr.Plot(label="Batch Analysis Results")
        
        with gr.Tab("History & Export"):
            with gr.Row():
                refresh_btn = gr.Button("Refresh History")
                clear_btn = gr.Button("Clear History", variant="stop")
                status_btn = gr.Button("Show Status")
            
            with gr.Row():
                csv_btn = gr.Button("Export CSV")
                json_btn = gr.Button("Export JSON")
            
            history_status = gr.Textbox(label="Status Information")
            history_plot = gr.Plot(label="History Trends")
            csv_file = gr.File(label="CSV Download", visible=True)
            json_file = gr.File(label="JSON Download", visible=True)
        
        with gr.Tab("Model Information"):
            gr.Markdown("""
            ## Supported Languages and Models
            
            | Language | Model | Description |
            |----------|-------|-------------|
            | **Multilingual** | XLM-RoBERTa | Supports 100+ languages automatically |
            | **English** | RoBERTa-base | Optimized for English text |
            | **Chinese 中文** | RoBERTa-Chinese | Specialized for Chinese language |
            | **Spanish Español** | BETO | Fine-tuned for Spanish sentiment |
            | **French Français** | tf-allocine | Trained on French movie reviews |
            
            ### Features:
            - **Automatic Language Detection**: The system can automatically detect the input language
            - **Attention-based Keywords**: Extract words that contribute most to sentiment prediction
            - **Interactive Visualizations**: Plotly-powered charts and graphs
            - **Batch Processing**: Analyze multiple texts at once
            - **Export Capabilities**: Save results in CSV or JSON format
            - **Multi-language Support**: Mix different languages in batch analysis
            """)
        
        # Event bindings
        analyze_btn.click(
            app.analyze_single,
            inputs=[text_input, model_selector, theme_selector],
            outputs=[result_output, prob_plot, gauge_plot, wordcloud_plot, keyword_plot]
        )
        
        load_btn.click(
            app.data_handler.process_file, 
            inputs=file_upload, 
            outputs=batch_input
        )
        
        batch_btn.click(
            app.analyze_batch, 
            inputs=[batch_input, batch_model_selector], 
            outputs=batch_plot
        )
        
        refresh_btn.click(
            lambda theme: app.plot_history(theme),
            inputs=theme_selector,
            outputs=[history_plot, history_status]
        )
        
        clear_btn.click(
            lambda: f"Cleared {app.history.clear()} entries",
            outputs=history_status
        )
        
        status_btn.click(
            lambda: f"History: {app.history.size()} entries | Available Models: {', '.join(config.MODELS.keys())}",
            outputs=history_status
        )
        
        csv_btn.click(
            lambda: app.data_handler.export_data(app.history.get_all(), 'csv'),
            outputs=[csv_file, history_status]
        )
        
        json_btn.click(
            lambda: app.data_handler.export_data(app.history.get_all(), 'json'),
            outputs=[json_file, history_status]
        )
    
    return demo

# Application Entry Point
if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    demo = create_interface()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )