File size: 37,733 Bytes
4e25610 0c511f2 75cb992 4e25610 d3eb8f6 4e25610 a58e3ae 4e25610 a58e3ae 0c511f2 061ab6f 4e25610 a58e3ae 4e25610 a58e3ae 4e25610 0c511f2 75cb992 4e25610 0c511f2 75cb992 0c511f2 4e25610 0c511f2 4e25610 d3eb8f6 a58e3ae 0c511f2 4e25610 75cb992 a58e3ae 0c511f2 a58e3ae 0c511f2 75cb992 0c511f2 75cb992 0c511f2 4e25610 0c511f2 a58e3ae 75cb992 a58e3ae 0c511f2 4e25610 0c511f2 4e25610 a58e3ae 0c511f2 4e25610 a58e3ae 4e25610 a58e3ae 4e25610 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 4e25610 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 061ab6f 0c511f2 75cb992 0c511f2 a58e3ae be7d5b2 a58e3ae 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 a58e3ae 0c511f2 75cb992 0c511f2 75cb992 a58e3ae d3eb8f6 a58e3ae 0c511f2 75cb992 0c511f2 75cb992 be7d5b2 71b3ce2 a58e3ae 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 4e25610 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 75cb992 a58e3ae 0c511f2 a58e3ae 0c511f2 4e25610 0c511f2 866f669 0c511f2 866f669 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 061ab6f 0c511f2 061ab6f 75cb992 0c511f2 75cb992 866f669 a58e3ae 866f669 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 75cb992 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 be7d5b2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 c74121f 75cb992 0c511f2 a58e3ae 0c511f2 061ab6f 0c511f2 75cb992 4e25610 0c511f2 a58e3ae 4e25610 0c511f2 75cb992 0c511f2 a58e3ae 866f669 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 0c511f2 a58e3ae 4e25610 a58e3ae 4e25610 a58e3ae 4e25610 0c511f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 |
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import numpy as np
from wordcloud import WordCloud
from collections import Counter, defaultdict
import re
import json
import csv
import io
import tempfile
from datetime import datetime
import logging
from functools import lru_cache, wraps
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple, Any, Callable
from contextlib import contextmanager
import gc
import base64
# Configuration
@dataclass
class Config:
MAX_HISTORY_SIZE: int = 1000
BATCH_SIZE_LIMIT: int = 50
MAX_TEXT_LENGTH: int = 512
MIN_WORD_LENGTH: int = 2
CACHE_SIZE: int = 128
BATCH_PROCESSING_SIZE: int = 8
# Visualization settings
FIGURE_WIDTH: int = 800
FIGURE_HEIGHT: int = 500
WORDCLOUD_SIZE: Tuple[int, int] = (800, 400)
THEMES = {
'default': {'pos': '#4ecdc4', 'neg': '#ff6b6b'},
'ocean': {'pos': '#0077be', 'neg': '#ff6b35'},
'forest': {'pos': '#228b22', 'neg': '#dc143c'},
'sunset': {'pos': '#ff8c00', 'neg': '#8b0000'}
}
# Multi-language models
MODELS = {
'multilingual': {
'name': 'cardiffnlp/twitter-xlm-roberta-base-sentiment',
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
},
'english': {
'name': 'cardiffnlp/twitter-roberta-base-sentiment-latest',
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
},
'chinese': {
'name': 'uer/roberta-base-finetuned-chinanews-chinese',
'labels': ['NEGATIVE', 'POSITIVE']
},
'spanish': {
'name': 'finiteautomata/beto-sentiment-analysis',
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
},
'french': {
'name': 'tblard/tf-allocine',
'labels': ['NEGATIVE', 'POSITIVE']
}
}
STOP_WORDS = {
'en': {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'have', 'has', 'had', 'will', 'would', 'could', 'should'},
'zh': {'的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个', '上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看'},
'es': {'el', 'la', 'de', 'que', 'y', 'a', 'en', 'un', 'es', 'se', 'no', 'te', 'lo', 'le', 'da', 'su', 'por', 'son', 'con', 'para', 'al', 'del', 'los', 'las'},
'fr': {'le', 'la', 'les', 'de', 'un', 'une', 'du', 'des', 'et', 'à', 'ce', 'il', 'que', 'qui', 'ne', 'se', 'pas', 'tout', 'être', 'avoir', 'sur', 'avec', 'par'},
}
config = Config()
logger = logging.getLogger(__name__)
# Decorators and Context Managers
def handle_errors(default_return=None):
"""Centralized error handling decorator"""
def decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
logger.error(f"{func.__name__} failed: {e}")
return default_return if default_return is not None else f"Error: {str(e)}"
return wrapper
return decorator
class ThemeContext:
"""Theme management context"""
def __init__(self, theme: str = 'default'):
self.theme = theme
self.colors = config.THEMES.get(theme, config.THEMES['default'])
# Enhanced Model Manager for Multi-language Support
class ModelManager:
"""Multi-language model manager with lazy loading"""
_instance = None
_models = {}
_tokenizers = {}
_pipelines = {}
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
@property
def device(self):
if self._device is None:
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return self._device
def get_pipeline(self, model_key: str = 'multilingual'):
"""Get or create sentiment analysis pipeline for specified model"""
if model_key not in self._pipelines:
try:
model_config = config.MODELS[model_key]
self._pipelines[model_key] = pipeline(
"sentiment-analysis",
model=model_config['name'],
tokenizer=model_config['name'],
device=0 if torch.cuda.is_available() else -1,
top_k=None
)
logger.info(f"Model {model_key} loaded successfully")
except Exception as e:
logger.error(f"Failed to load model {model_key}: {e}")
# Fallback to multilingual model
if model_key != 'multilingual':
return self.get_pipeline('multilingual')
raise
return self._pipelines[model_key]
def get_model_and_tokenizer(self, model_key: str = 'multilingual'):
"""Get model and tokenizer for attention extraction"""
if model_key not in self._models:
try:
model_config = config.MODELS[model_key]
self._tokenizers[model_key] = AutoTokenizer.from_pretrained(model_config['name'])
self._models[model_key] = AutoModelForSequenceClassification.from_pretrained(model_config['name'])
self._models[model_key].to(self.device)
logger.info(f"Model and tokenizer {model_key} loaded for attention extraction")
except Exception as e:
logger.error(f"Failed to load model/tokenizer {model_key}: {e}")
if model_key != 'multilingual':
return self.get_model_and_tokenizer('multilingual')
raise
return self._models[model_key], self._tokenizers[model_key]
# Language Detection
class LanguageDetector:
"""Simple language detection based on character patterns"""
@staticmethod
def detect_language(text: str) -> str:
"""Detect language based on character patterns"""
# Chinese characters
if re.search(r'[\u4e00-\u9fff]', text):
return 'chinese'
# Spanish patterns
elif re.search(r'[ñáéíóúü]', text.lower()):
return 'spanish'
# French patterns
elif re.search(r'[àâäçéèêëïîôùûüÿ]', text.lower()):
return 'french'
# Default to English/Multilingual
else:
return 'multilingual'
# Simplified Core Classes
class TextProcessor:
"""Optimized text processing with multi-language support"""
@staticmethod
@lru_cache(maxsize=config.CACHE_SIZE)
def clean_text(text: str, language: str = 'en') -> Tuple[str, ...]:
"""Single-pass text cleaning with language-specific stop words"""
words = re.findall(r'\b\w{2,}\b', text.lower())
stop_words = config.STOP_WORDS.get(language, config.STOP_WORDS['en'])
return tuple(w for w in words if w not in stop_words and len(w) >= config.MIN_WORD_LENGTH)
class HistoryManager:
"""Simplified history management"""
def __init__(self):
self._history = []
def add(self, entry: Dict):
self._history.append({**entry, 'timestamp': datetime.now().isoformat()})
if len(self._history) > config.MAX_HISTORY_SIZE:
self._history = self._history[-config.MAX_HISTORY_SIZE:]
def get_all(self) -> List[Dict]:
return self._history.copy()
def clear(self) -> int:
count = len(self._history)
self._history.clear()
return count
def size(self) -> int:
return len(self._history)
# Core Analysis Engine with Multi-language Support
class SentimentEngine:
"""Multi-language sentiment analysis with attention-based keyword extraction"""
def __init__(self):
self.model_manager = ModelManager()
self.language_detector = LanguageDetector()
def extract_key_words(self, text: str, model_key: str = 'multilingual', top_k: int = 10) -> List[Tuple[str, float]]:
"""Extract contributing words using attention weights"""
try:
model, tokenizer = self.model_manager.get_model_and_tokenizer(model_key)
inputs = tokenizer(
text, return_tensors="pt", padding=True,
truncation=True, max_length=config.MAX_TEXT_LENGTH
).to(self.model_manager.device)
# Get model outputs with attention weights
with torch.no_grad():
outputs = model(**inputs, output_attentions=True)
attention = outputs.attentions
# Use the last layer's attention, average over all heads
last_attention = attention[-1]
avg_attention = last_attention.mean(dim=1)
# Focus on attention to [CLS] token
cls_attention = avg_attention[0, 0, :]
# Get tokens and their attention scores
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
attention_scores = cls_attention.cpu().numpy()
# Filter out special tokens and combine subword tokens
word_scores = {}
current_word = ""
current_score = 0.0
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
if token in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>', '<pad>']:
continue
if token.startswith('##') or token.startswith('▁'):
# Subword token
current_word += token[2:] if token.startswith('##') else token[1:]
current_score = max(current_score, score)
else:
# New word, save previous if exists
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
word_scores[current_word.lower()] = current_score
current_word = token
current_score = score
# Don't forget the last word
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
word_scores[current_word.lower()] = current_score
# Filter out stop words and sort by attention score
lang_code = 'zh' if model_key == 'chinese' else 'es' if model_key == 'spanish' else 'fr' if model_key == 'french' else 'en'
stop_words = config.STOP_WORDS.get(lang_code, config.STOP_WORDS['en'])
filtered_words = {
word: score for word, score in word_scores.items()
if word not in stop_words and len(word) >= config.MIN_WORD_LENGTH
}
# Sort by attention score and return top_k
sorted_words = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
return sorted_words[:top_k]
except Exception as e:
logger.error(f"Key word extraction failed: {e}")
return []
@handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0, 'key_words': []})
def analyze_single(self, text: str, model_key: str = None) -> Dict:
"""Analyze single text with automatic language detection"""
if not text.strip():
raise ValueError("Empty text")
# Auto-detect language if not specified
if model_key is None:
detected_lang = self.language_detector.detect_language(text)
model_key = detected_lang if detected_lang in config.MODELS else 'multilingual'
# Get sentiment analysis pipeline
classifier = self.model_manager.get_pipeline(model_key)
results = classifier(text)
# Process results based on model output format
if isinstance(results[0], list):
results = results[0]
# Map results to standardized format
sentiment_map = {'POSITIVE': 'Positive', 'NEGATIVE': 'Negative', 'NEUTRAL': 'Neutral'}
# Find positive and negative scores
pos_score = 0.0
neg_score = 0.0
neutral_score = 0.0
for result in results:
label = result['label']
score = result['score']
if 'POSITIVE' in label:
pos_score = score
elif 'NEGATIVE' in label:
neg_score = score
elif 'NEUTRAL' in label:
neutral_score = score
# Determine final sentiment
if pos_score > neg_score and pos_score > neutral_score:
sentiment = 'Positive'
confidence = pos_score
elif neg_score > pos_score and neg_score > neutral_score:
sentiment = 'Negative'
confidence = neg_score
else:
sentiment = 'Neutral'
confidence = neutral_score
# Extract key contributing words
key_words = self.extract_key_words(text, model_key)
return {
'sentiment': sentiment,
'confidence': float(confidence),
'pos_prob': float(pos_score),
'neg_prob': float(neg_score),
'neutral_prob': float(neutral_score),
'key_words': key_words,
'language': model_key
}
@handle_errors(default_return=[])
def analyze_batch(self, texts: List[str], model_key: str = None, progress_callback=None) -> List[Dict]:
"""Optimized batch processing with key words"""
if len(texts) > config.BATCH_SIZE_LIMIT:
texts = texts[:config.BATCH_SIZE_LIMIT]
results = []
for i, text in enumerate(texts):
if progress_callback:
progress_callback((i + 1) / len(texts))
result = self.analyze_single(text, model_key)
result['text'] = text[:50] + '...' if len(text) > 50 else text
result['full_text'] = text
results.append(result)
return results
# Plotly Visualization System
class PlotFactory:
"""Factory for creating Plotly visualizations"""
@staticmethod
@handle_errors(default_return=None)
def create_sentiment_bars(result: Dict, theme: ThemeContext) -> go.Figure:
"""Create sentiment probability bars using Plotly"""
labels = []
values = []
colors = []
if 'neg_prob' in result and result['neg_prob'] > 0:
labels.append("Negative")
values.append(result['neg_prob'])
colors.append(theme.colors['neg'])
if 'neutral_prob' in result and result['neutral_prob'] > 0:
labels.append("Neutral")
values.append(result['neutral_prob'])
colors.append('#FFA500') # Orange for neutral
if 'pos_prob' in result and result['pos_prob'] > 0:
labels.append("Positive")
values.append(result['pos_prob'])
colors.append(theme.colors['pos'])
fig = go.Figure(data=[
go.Bar(
x=labels,
y=values,
marker_color=colors,
text=[f'{v:.3f}' for v in values],
textposition='auto',
)
])
fig.update_layout(
title="Sentiment Probabilities",
xaxis_title="Sentiment",
yaxis_title="Probability",
yaxis=dict(range=[0, 1]),
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT,
showlegend=False
)
return fig
@staticmethod
@handle_errors(default_return=None)
def create_confidence_gauge(confidence: float, sentiment: str, theme: ThemeContext) -> go.Figure:
"""Create confidence gauge using Plotly"""
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
fig = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = confidence,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': f"{sentiment} Confidence"},
delta = {'reference': 0.5},
gauge = {
'axis': {'range': [None, 1]},
'bar': {'color': color},
'steps': [
{'range': [0, 0.5], 'color': "lightgray"},
{'range': [0.5, 1], 'color': "gray"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 0.9
}
}
))
fig.update_layout(
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT
)
return fig
@staticmethod
@handle_errors(default_return=None)
def create_keyword_chart(key_words: List[Tuple[str, float]], sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
"""Create horizontal bar chart for key contributing words"""
if not key_words:
return None
words = [word for word, score in key_words]
scores = [score for word, score in key_words]
# Choose color based on sentiment
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
fig = go.Figure(go.Bar(
x=scores,
y=words,
orientation='h',
marker_color=color,
text=[f'{score:.3f}' for score in scores],
textposition='auto',
))
fig.update_layout(
title=f'Top Contributing Words ({sentiment})',
xaxis_title='Attention Weight',
yaxis_title='Words',
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT,
yaxis={'categoryorder': 'total ascending'}
)
return fig
@staticmethod
@handle_errors(default_return=None)
def create_wordcloud_plot(text: str, sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
"""Create word cloud visualization"""
if len(text.split()) < 3:
return None
try:
colormap = 'Greens' if sentiment == 'Positive' else 'Reds' if sentiment == 'Negative' else 'Blues'
wc = WordCloud(
width=config.WORDCLOUD_SIZE[0],
height=config.WORDCLOUD_SIZE[1],
background_color='white',
colormap=colormap,
max_words=30
).generate(text)
# Convert to image
img_array = wc.to_array()
fig = go.Figure()
fig.add_trace(go.Image(z=img_array))
fig.update_layout(
title=f'{sentiment} Word Cloud',
xaxis={'visible': False},
yaxis={'visible': False},
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT,
margin=dict(l=0, r=0, t=30, b=0)
)
return fig
except Exception as e:
logger.error(f"Word cloud generation failed: {e}")
return None
@staticmethod
@handle_errors(default_return=None)
def create_batch_analysis(results: List[Dict], theme: ThemeContext) -> go.Figure:
"""Create comprehensive batch visualization using Plotly subplots"""
fig = make_subplots(
rows=2, cols=2,
subplot_titles=['Sentiment Distribution', 'Confidence Distribution',
'Sentiment Progression', 'Language Distribution'],
specs=[[{"type": "pie"}, {"type": "histogram"}],
[{"type": "scatter", "colspan": 2}, None]]
)
# Sentiment distribution (pie chart)
sent_counts = Counter([r['sentiment'] for r in results])
colors_pie = [theme.colors['pos'] if s == 'Positive' else theme.colors['neg'] if s == 'Negative' else '#FFA500' for s in sent_counts.keys()]
fig.add_trace(
go.Pie(labels=list(sent_counts.keys()), values=list(sent_counts.values()),
marker_colors=colors_pie, name="Sentiment"),
row=1, col=1
)
# Confidence histogram
confs = [r['confidence'] for r in results]
fig.add_trace(
go.Histogram(x=confs, nbinsx=8, marker_color='skyblue', name="Confidence"),
row=1, col=2
)
# Sentiment progression
pos_probs = [r.get('pos_prob', 0) for r in results]
indices = list(range(len(results)))
colors_scatter = [theme.colors['pos'] if r['sentiment'] == 'Positive'
else theme.colors['neg'] if r['sentiment'] == 'Negative'
else '#FFA500' for r in results]
fig.add_trace(
go.Scatter(x=indices, y=pos_probs, mode='markers',
marker=dict(color=colors_scatter, size=8),
name="Sentiment Progression"),
row=2, col=1
)
# Add horizontal line at 0.5
fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=2, col=1)
fig.update_layout(
height=800,
width=1000,
showlegend=False,
title_text="Batch Analysis Results"
)
return fig
# Unified Data Handler (unchanged)
class DataHandler:
"""Handles all data operations"""
@staticmethod
@handle_errors(default_return=(None, "Export failed"))
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
"""Universal data export"""
if not data:
return None, "No data to export"
temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False,
suffix=f'.{format_type}', encoding='utf-8')
if format_type == 'csv':
writer = csv.writer(temp_file)
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Pos_Prob', 'Neg_Prob', 'Neutral_Prob', 'Language', 'Key_Words'])
for entry in data:
writer.writerow([
entry.get('timestamp', ''),
entry.get('text', ''),
entry.get('sentiment', ''),
f"{entry.get('confidence', 0):.4f}",
f"{entry.get('pos_prob', 0):.4f}",
f"{entry.get('neg_prob', 0):.4f}",
f"{entry.get('neutral_prob', 0):.4f}",
entry.get('language', ''),
"|".join([f"{word}:{score:.3f}" for word, score in entry.get('key_words', [])])
])
elif format_type == 'json':
json.dump(data, temp_file, indent=2, ensure_ascii=False)
temp_file.close()
return temp_file.name, f"Exported {len(data)} entries"
@staticmethod
@handle_errors(default_return="")
def process_file(file) -> str:
"""Process uploaded file"""
if not file:
return ""
content = file.read().decode('utf-8')
if file.name.endswith('.csv'):
import io
csv_file = io.StringIO(content)
reader = csv.reader(csv_file)
try:
next(reader)
texts = []
for row in reader:
if row and row[0].strip():
text = row[0].strip().strip('"')
if text:
texts.append(text)
return '\n'.join(texts)
except Exception as e:
lines = content.strip().split('\n')[1:]
texts = []
for line in lines:
if line.strip():
text = line.strip().strip('"')
if text:
texts.append(text)
return '\n'.join(texts)
return content
# Main Application with Multi-language Support
class SentimentApp:
"""Main application orchestrator with multi-language support"""
def __init__(self):
self.engine = SentimentEngine()
self.history = HistoryManager()
self.data_handler = DataHandler()
# Multi-language examples
self.examples = [
["While the film's visual effects were undeniably impressive, the story lacked emotional weight, and the pacing felt inconsistent throughout."],
["这部电影的视觉效果令人印象深刻,但故事缺乏情感深度,节奏感也不够连贯。"],
["Aunque los efectos visuales de la película fueron innegablemente impresionantes, la historia carecía de peso emocional."],
["Bien que les effets visuels du film soient indéniablement impressionnants, l'histoire manquait de poids émotionnel."],
["An extraordinary achievement in filmmaking — the direction was masterful, the script was sharp, and every performance added depth and realism."]
]
@handle_errors(default_return=("Please enter text", None, None, None, None))
def analyze_single(self, text: str, model_key: str = 'multilingual', theme: str = 'default'):
"""Single text analysis with multi-language support"""
if not text.strip():
return "Please enter text", None, None, None, None
result = self.engine.analyze_single(text, model_key)
# Add to history
self.history.add({
'text': text[:100],
'full_text': text,
**result
})
# Create visualizations
theme_ctx = ThemeContext(theme)
prob_plot = PlotFactory.create_sentiment_bars(result, theme_ctx)
gauge_plot = PlotFactory.create_confidence_gauge(result['confidence'], result['sentiment'], theme_ctx)
cloud_plot = PlotFactory.create_wordcloud_plot(text, result['sentiment'], theme_ctx)
keyword_plot = PlotFactory.create_keyword_chart(result['key_words'], result['sentiment'], theme_ctx)
# Format result text with key words
key_words_str = ", ".join([f"{word}({score:.3f})" for word, score in result['key_words'][:5]])
result_text = (f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.3f})\n"
f"Language: {result['language']}\n"
f"Key Words: {key_words_str}")
return result_text, prob_plot, gauge_plot, cloud_plot, keyword_plot
@handle_errors(default_return=None)
def analyze_batch(self, reviews: str, model_key: str = 'multilingual', progress=None):
"""Batch analysis with multi-language support"""
if not reviews.strip():
return None
texts = [r.strip() for r in reviews.split('\n') if r.strip()]
if len(texts) < 2:
return None
results = self.engine.analyze_batch(texts, model_key, progress)
# Add to history
for result in results:
self.history.add(result)
# Create visualization
theme_ctx = ThemeContext('default')
return PlotFactory.create_batch_analysis(results, theme_ctx)
@handle_errors(default_return=(None, "No history available"))
def plot_history(self, theme: str = 'default'):
"""Plot analysis history using Plotly"""
history = self.history.get_all()
if len(history) < 2:
return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
theme_ctx = ThemeContext(theme)
# Create subplots
fig = make_subplots(
rows=2, cols=1,
subplot_titles=['Sentiment History', 'Confidence Over Time'],
vertical_spacing=0.12
)
indices = list(range(len(history)))
pos_probs = [item.get('pos_prob', 0) for item in history]
confs = [item['confidence'] for item in history]
# Sentiment trend
colors = [theme_ctx.colors['pos'] if p > 0.5 else theme_ctx.colors['neg'] for p in pos_probs]
fig.add_trace(
go.Scatter(
x=indices,
y=pos_probs,
mode='markers+lines',
marker=dict(color=colors, size=8),
line=dict(color='gray', width=2),
name='Sentiment Trend'
),
row=1, col=1
)
# Add horizontal line at 0.5
fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=1, col=1)
# Confidence trend
fig.add_trace(
go.Bar(
x=indices,
y=confs,
marker_color='lightblue',
marker_line_color='navy',
marker_line_width=1,
name='Confidence'
),
row=2, col=1
)
fig.update_layout(
height=800,
width=1000,
showlegend=False,
title_text="Analysis History"
)
fig.update_xaxes(title_text="Analysis Number", row=2, col=1)
fig.update_yaxes(title_text="Positive Probability", row=1, col=1)
fig.update_yaxes(title_text="Confidence", row=2, col=1)
return fig, f"History: {len(history)} analyses"
# Gradio Interface Setup with Multi-language Support
def create_interface():
"""Create streamlined Gradio interface with multi-language support"""
app = SentimentApp()
with gr.Blocks(theme=gr.themes.Soft(), title="Multi-language Sentiment Analyzer") as demo:
gr.Markdown("# 🌍 AI Multi-language Sentiment Analyzer")
gr.Markdown("Advanced sentiment analysis supporting multiple languages with Plotly visualizations and key word extraction")
with gr.Tab("Single Analysis"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Review Text (Multiple Languages Supported)",
placeholder="Enter your review in any supported language...",
lines=5
)
with gr.Row():
analyze_btn = gr.Button("Analyze", variant="primary")
model_selector = gr.Dropdown(
choices=[
('Auto-detect', 'multilingual'),
('Multilingual', 'multilingual'),
('English', 'english'),
('Chinese 中文', 'chinese'),
('Spanish Español', 'spanish'),
('French Français', 'french')
],
value="multilingual",
label="Language Model"
)
theme_selector = gr.Dropdown(
choices=list(config.THEMES.keys()),
value="default",
label="Theme"
)
gr.Examples(
examples=app.examples,
inputs=text_input,
label="Multi-language Examples"
)
with gr.Column():
result_output = gr.Textbox(label="Analysis Result", lines=4)
with gr.Row():
prob_plot = gr.Plot(label="Sentiment Probabilities")
gauge_plot = gr.Plot(label="Confidence Gauge")
with gr.Row():
wordcloud_plot = gr.Plot(label="Word Cloud")
keyword_plot = gr.Plot(label="Key Contributing Words")
with gr.Tab("Batch Analysis"):
with gr.Row():
with gr.Column():
file_upload = gr.File(label="Upload File", file_types=[".csv", ".txt"])
batch_input = gr.Textbox(
label="Reviews (one per line, mixed languages supported)",
lines=8,
placeholder="Enter multiple reviews, one per line...\nSupports mixed languages in the same batch!"
)
with gr.Column():
load_btn = gr.Button("Load File")
with gr.Row():
batch_btn = gr.Button("Analyze Batch", variant="primary")
batch_model_selector = gr.Dropdown(
choices=[
('Auto-detect', 'multilingual'),
('Multilingual', 'multilingual'),
('English', 'english'),
('Chinese 中文', 'chinese'),
('Spanish Español', 'spanish'),
('French Français', 'french')
],
value="multilingual",
label="Batch Model"
)
batch_plot = gr.Plot(label="Batch Analysis Results")
with gr.Tab("History & Export"):
with gr.Row():
refresh_btn = gr.Button("Refresh History")
clear_btn = gr.Button("Clear History", variant="stop")
status_btn = gr.Button("Show Status")
with gr.Row():
csv_btn = gr.Button("Export CSV")
json_btn = gr.Button("Export JSON")
history_status = gr.Textbox(label="Status Information")
history_plot = gr.Plot(label="History Trends")
csv_file = gr.File(label="CSV Download", visible=True)
json_file = gr.File(label="JSON Download", visible=True)
with gr.Tab("Model Information"):
gr.Markdown("""
## Supported Languages and Models
| Language | Model | Description |
|----------|-------|-------------|
| **Multilingual** | XLM-RoBERTa | Supports 100+ languages automatically |
| **English** | RoBERTa-base | Optimized for English text |
| **Chinese 中文** | RoBERTa-Chinese | Specialized for Chinese language |
| **Spanish Español** | BETO | Fine-tuned for Spanish sentiment |
| **French Français** | tf-allocine | Trained on French movie reviews |
### Features:
- **Automatic Language Detection**: The system can automatically detect the input language
- **Attention-based Keywords**: Extract words that contribute most to sentiment prediction
- **Interactive Visualizations**: Plotly-powered charts and graphs
- **Batch Processing**: Analyze multiple texts at once
- **Export Capabilities**: Save results in CSV or JSON format
- **Multi-language Support**: Mix different languages in batch analysis
""")
# Event bindings
analyze_btn.click(
app.analyze_single,
inputs=[text_input, model_selector, theme_selector],
outputs=[result_output, prob_plot, gauge_plot, wordcloud_plot, keyword_plot]
)
load_btn.click(
app.data_handler.process_file,
inputs=file_upload,
outputs=batch_input
)
batch_btn.click(
app.analyze_batch,
inputs=[batch_input, batch_model_selector],
outputs=batch_plot
)
refresh_btn.click(
lambda theme: app.plot_history(theme),
inputs=theme_selector,
outputs=[history_plot, history_status]
)
clear_btn.click(
lambda: f"Cleared {app.history.clear()} entries",
outputs=history_status
)
status_btn.click(
lambda: f"History: {app.history.size()} entries | Available Models: {', '.join(config.MODELS.keys())}",
outputs=history_status
)
csv_btn.click(
lambda: app.data_handler.export_data(app.history.get_all(), 'csv'),
outputs=[csv_file, history_status]
)
json_btn.click(
lambda: app.data_handler.export_data(app.history.get_all(), 'json'),
outputs=[json_file, history_status]
)
return demo
# Application Entry Point
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |