entropy25's picture
Update app.py
0c511f2 verified
raw
history blame
37.7 kB
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import numpy as np
from wordcloud import WordCloud
from collections import Counter, defaultdict
import re
import json
import csv
import io
import tempfile
from datetime import datetime
import logging
from functools import lru_cache, wraps
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple, Any, Callable
from contextlib import contextmanager
import gc
import base64
# Configuration
@dataclass
class Config:
MAX_HISTORY_SIZE: int = 1000
BATCH_SIZE_LIMIT: int = 50
MAX_TEXT_LENGTH: int = 512
MIN_WORD_LENGTH: int = 2
CACHE_SIZE: int = 128
BATCH_PROCESSING_SIZE: int = 8
# Visualization settings
FIGURE_WIDTH: int = 800
FIGURE_HEIGHT: int = 500
WORDCLOUD_SIZE: Tuple[int, int] = (800, 400)
THEMES = {
'default': {'pos': '#4ecdc4', 'neg': '#ff6b6b'},
'ocean': {'pos': '#0077be', 'neg': '#ff6b35'},
'forest': {'pos': '#228b22', 'neg': '#dc143c'},
'sunset': {'pos': '#ff8c00', 'neg': '#8b0000'}
}
# Multi-language models
MODELS = {
'multilingual': {
'name': 'cardiffnlp/twitter-xlm-roberta-base-sentiment',
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
},
'english': {
'name': 'cardiffnlp/twitter-roberta-base-sentiment-latest',
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
},
'chinese': {
'name': 'uer/roberta-base-finetuned-chinanews-chinese',
'labels': ['NEGATIVE', 'POSITIVE']
},
'spanish': {
'name': 'finiteautomata/beto-sentiment-analysis',
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
},
'french': {
'name': 'tblard/tf-allocine',
'labels': ['NEGATIVE', 'POSITIVE']
}
}
STOP_WORDS = {
'en': {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'have', 'has', 'had', 'will', 'would', 'could', 'should'},
'zh': {'的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个', '上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看'},
'es': {'el', 'la', 'de', 'que', 'y', 'a', 'en', 'un', 'es', 'se', 'no', 'te', 'lo', 'le', 'da', 'su', 'por', 'son', 'con', 'para', 'al', 'del', 'los', 'las'},
'fr': {'le', 'la', 'les', 'de', 'un', 'une', 'du', 'des', 'et', 'à', 'ce', 'il', 'que', 'qui', 'ne', 'se', 'pas', 'tout', 'être', 'avoir', 'sur', 'avec', 'par'},
}
config = Config()
logger = logging.getLogger(__name__)
# Decorators and Context Managers
def handle_errors(default_return=None):
"""Centralized error handling decorator"""
def decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
logger.error(f"{func.__name__} failed: {e}")
return default_return if default_return is not None else f"Error: {str(e)}"
return wrapper
return decorator
class ThemeContext:
"""Theme management context"""
def __init__(self, theme: str = 'default'):
self.theme = theme
self.colors = config.THEMES.get(theme, config.THEMES['default'])
# Enhanced Model Manager for Multi-language Support
class ModelManager:
"""Multi-language model manager with lazy loading"""
_instance = None
_models = {}
_tokenizers = {}
_pipelines = {}
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
@property
def device(self):
if self._device is None:
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return self._device
def get_pipeline(self, model_key: str = 'multilingual'):
"""Get or create sentiment analysis pipeline for specified model"""
if model_key not in self._pipelines:
try:
model_config = config.MODELS[model_key]
self._pipelines[model_key] = pipeline(
"sentiment-analysis",
model=model_config['name'],
tokenizer=model_config['name'],
device=0 if torch.cuda.is_available() else -1,
top_k=None
)
logger.info(f"Model {model_key} loaded successfully")
except Exception as e:
logger.error(f"Failed to load model {model_key}: {e}")
# Fallback to multilingual model
if model_key != 'multilingual':
return self.get_pipeline('multilingual')
raise
return self._pipelines[model_key]
def get_model_and_tokenizer(self, model_key: str = 'multilingual'):
"""Get model and tokenizer for attention extraction"""
if model_key not in self._models:
try:
model_config = config.MODELS[model_key]
self._tokenizers[model_key] = AutoTokenizer.from_pretrained(model_config['name'])
self._models[model_key] = AutoModelForSequenceClassification.from_pretrained(model_config['name'])
self._models[model_key].to(self.device)
logger.info(f"Model and tokenizer {model_key} loaded for attention extraction")
except Exception as e:
logger.error(f"Failed to load model/tokenizer {model_key}: {e}")
if model_key != 'multilingual':
return self.get_model_and_tokenizer('multilingual')
raise
return self._models[model_key], self._tokenizers[model_key]
# Language Detection
class LanguageDetector:
"""Simple language detection based on character patterns"""
@staticmethod
def detect_language(text: str) -> str:
"""Detect language based on character patterns"""
# Chinese characters
if re.search(r'[\u4e00-\u9fff]', text):
return 'chinese'
# Spanish patterns
elif re.search(r'[ñáéíóúü]', text.lower()):
return 'spanish'
# French patterns
elif re.search(r'[àâäçéèêëïîôùûüÿ]', text.lower()):
return 'french'
# Default to English/Multilingual
else:
return 'multilingual'
# Simplified Core Classes
class TextProcessor:
"""Optimized text processing with multi-language support"""
@staticmethod
@lru_cache(maxsize=config.CACHE_SIZE)
def clean_text(text: str, language: str = 'en') -> Tuple[str, ...]:
"""Single-pass text cleaning with language-specific stop words"""
words = re.findall(r'\b\w{2,}\b', text.lower())
stop_words = config.STOP_WORDS.get(language, config.STOP_WORDS['en'])
return tuple(w for w in words if w not in stop_words and len(w) >= config.MIN_WORD_LENGTH)
class HistoryManager:
"""Simplified history management"""
def __init__(self):
self._history = []
def add(self, entry: Dict):
self._history.append({**entry, 'timestamp': datetime.now().isoformat()})
if len(self._history) > config.MAX_HISTORY_SIZE:
self._history = self._history[-config.MAX_HISTORY_SIZE:]
def get_all(self) -> List[Dict]:
return self._history.copy()
def clear(self) -> int:
count = len(self._history)
self._history.clear()
return count
def size(self) -> int:
return len(self._history)
# Core Analysis Engine with Multi-language Support
class SentimentEngine:
"""Multi-language sentiment analysis with attention-based keyword extraction"""
def __init__(self):
self.model_manager = ModelManager()
self.language_detector = LanguageDetector()
def extract_key_words(self, text: str, model_key: str = 'multilingual', top_k: int = 10) -> List[Tuple[str, float]]:
"""Extract contributing words using attention weights"""
try:
model, tokenizer = self.model_manager.get_model_and_tokenizer(model_key)
inputs = tokenizer(
text, return_tensors="pt", padding=True,
truncation=True, max_length=config.MAX_TEXT_LENGTH
).to(self.model_manager.device)
# Get model outputs with attention weights
with torch.no_grad():
outputs = model(**inputs, output_attentions=True)
attention = outputs.attentions
# Use the last layer's attention, average over all heads
last_attention = attention[-1]
avg_attention = last_attention.mean(dim=1)
# Focus on attention to [CLS] token
cls_attention = avg_attention[0, 0, :]
# Get tokens and their attention scores
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
attention_scores = cls_attention.cpu().numpy()
# Filter out special tokens and combine subword tokens
word_scores = {}
current_word = ""
current_score = 0.0
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
if token in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>', '<pad>']:
continue
if token.startswith('##') or token.startswith('▁'):
# Subword token
current_word += token[2:] if token.startswith('##') else token[1:]
current_score = max(current_score, score)
else:
# New word, save previous if exists
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
word_scores[current_word.lower()] = current_score
current_word = token
current_score = score
# Don't forget the last word
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
word_scores[current_word.lower()] = current_score
# Filter out stop words and sort by attention score
lang_code = 'zh' if model_key == 'chinese' else 'es' if model_key == 'spanish' else 'fr' if model_key == 'french' else 'en'
stop_words = config.STOP_WORDS.get(lang_code, config.STOP_WORDS['en'])
filtered_words = {
word: score for word, score in word_scores.items()
if word not in stop_words and len(word) >= config.MIN_WORD_LENGTH
}
# Sort by attention score and return top_k
sorted_words = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
return sorted_words[:top_k]
except Exception as e:
logger.error(f"Key word extraction failed: {e}")
return []
@handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0, 'key_words': []})
def analyze_single(self, text: str, model_key: str = None) -> Dict:
"""Analyze single text with automatic language detection"""
if not text.strip():
raise ValueError("Empty text")
# Auto-detect language if not specified
if model_key is None:
detected_lang = self.language_detector.detect_language(text)
model_key = detected_lang if detected_lang in config.MODELS else 'multilingual'
# Get sentiment analysis pipeline
classifier = self.model_manager.get_pipeline(model_key)
results = classifier(text)
# Process results based on model output format
if isinstance(results[0], list):
results = results[0]
# Map results to standardized format
sentiment_map = {'POSITIVE': 'Positive', 'NEGATIVE': 'Negative', 'NEUTRAL': 'Neutral'}
# Find positive and negative scores
pos_score = 0.0
neg_score = 0.0
neutral_score = 0.0
for result in results:
label = result['label']
score = result['score']
if 'POSITIVE' in label:
pos_score = score
elif 'NEGATIVE' in label:
neg_score = score
elif 'NEUTRAL' in label:
neutral_score = score
# Determine final sentiment
if pos_score > neg_score and pos_score > neutral_score:
sentiment = 'Positive'
confidence = pos_score
elif neg_score > pos_score and neg_score > neutral_score:
sentiment = 'Negative'
confidence = neg_score
else:
sentiment = 'Neutral'
confidence = neutral_score
# Extract key contributing words
key_words = self.extract_key_words(text, model_key)
return {
'sentiment': sentiment,
'confidence': float(confidence),
'pos_prob': float(pos_score),
'neg_prob': float(neg_score),
'neutral_prob': float(neutral_score),
'key_words': key_words,
'language': model_key
}
@handle_errors(default_return=[])
def analyze_batch(self, texts: List[str], model_key: str = None, progress_callback=None) -> List[Dict]:
"""Optimized batch processing with key words"""
if len(texts) > config.BATCH_SIZE_LIMIT:
texts = texts[:config.BATCH_SIZE_LIMIT]
results = []
for i, text in enumerate(texts):
if progress_callback:
progress_callback((i + 1) / len(texts))
result = self.analyze_single(text, model_key)
result['text'] = text[:50] + '...' if len(text) > 50 else text
result['full_text'] = text
results.append(result)
return results
# Plotly Visualization System
class PlotFactory:
"""Factory for creating Plotly visualizations"""
@staticmethod
@handle_errors(default_return=None)
def create_sentiment_bars(result: Dict, theme: ThemeContext) -> go.Figure:
"""Create sentiment probability bars using Plotly"""
labels = []
values = []
colors = []
if 'neg_prob' in result and result['neg_prob'] > 0:
labels.append("Negative")
values.append(result['neg_prob'])
colors.append(theme.colors['neg'])
if 'neutral_prob' in result and result['neutral_prob'] > 0:
labels.append("Neutral")
values.append(result['neutral_prob'])
colors.append('#FFA500') # Orange for neutral
if 'pos_prob' in result and result['pos_prob'] > 0:
labels.append("Positive")
values.append(result['pos_prob'])
colors.append(theme.colors['pos'])
fig = go.Figure(data=[
go.Bar(
x=labels,
y=values,
marker_color=colors,
text=[f'{v:.3f}' for v in values],
textposition='auto',
)
])
fig.update_layout(
title="Sentiment Probabilities",
xaxis_title="Sentiment",
yaxis_title="Probability",
yaxis=dict(range=[0, 1]),
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT,
showlegend=False
)
return fig
@staticmethod
@handle_errors(default_return=None)
def create_confidence_gauge(confidence: float, sentiment: str, theme: ThemeContext) -> go.Figure:
"""Create confidence gauge using Plotly"""
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
fig = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = confidence,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': f"{sentiment} Confidence"},
delta = {'reference': 0.5},
gauge = {
'axis': {'range': [None, 1]},
'bar': {'color': color},
'steps': [
{'range': [0, 0.5], 'color': "lightgray"},
{'range': [0.5, 1], 'color': "gray"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 0.9
}
}
))
fig.update_layout(
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT
)
return fig
@staticmethod
@handle_errors(default_return=None)
def create_keyword_chart(key_words: List[Tuple[str, float]], sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
"""Create horizontal bar chart for key contributing words"""
if not key_words:
return None
words = [word for word, score in key_words]
scores = [score for word, score in key_words]
# Choose color based on sentiment
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
fig = go.Figure(go.Bar(
x=scores,
y=words,
orientation='h',
marker_color=color,
text=[f'{score:.3f}' for score in scores],
textposition='auto',
))
fig.update_layout(
title=f'Top Contributing Words ({sentiment})',
xaxis_title='Attention Weight',
yaxis_title='Words',
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT,
yaxis={'categoryorder': 'total ascending'}
)
return fig
@staticmethod
@handle_errors(default_return=None)
def create_wordcloud_plot(text: str, sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
"""Create word cloud visualization"""
if len(text.split()) < 3:
return None
try:
colormap = 'Greens' if sentiment == 'Positive' else 'Reds' if sentiment == 'Negative' else 'Blues'
wc = WordCloud(
width=config.WORDCLOUD_SIZE[0],
height=config.WORDCLOUD_SIZE[1],
background_color='white',
colormap=colormap,
max_words=30
).generate(text)
# Convert to image
img_array = wc.to_array()
fig = go.Figure()
fig.add_trace(go.Image(z=img_array))
fig.update_layout(
title=f'{sentiment} Word Cloud',
xaxis={'visible': False},
yaxis={'visible': False},
width=config.FIGURE_WIDTH,
height=config.FIGURE_HEIGHT,
margin=dict(l=0, r=0, t=30, b=0)
)
return fig
except Exception as e:
logger.error(f"Word cloud generation failed: {e}")
return None
@staticmethod
@handle_errors(default_return=None)
def create_batch_analysis(results: List[Dict], theme: ThemeContext) -> go.Figure:
"""Create comprehensive batch visualization using Plotly subplots"""
fig = make_subplots(
rows=2, cols=2,
subplot_titles=['Sentiment Distribution', 'Confidence Distribution',
'Sentiment Progression', 'Language Distribution'],
specs=[[{"type": "pie"}, {"type": "histogram"}],
[{"type": "scatter", "colspan": 2}, None]]
)
# Sentiment distribution (pie chart)
sent_counts = Counter([r['sentiment'] for r in results])
colors_pie = [theme.colors['pos'] if s == 'Positive' else theme.colors['neg'] if s == 'Negative' else '#FFA500' for s in sent_counts.keys()]
fig.add_trace(
go.Pie(labels=list(sent_counts.keys()), values=list(sent_counts.values()),
marker_colors=colors_pie, name="Sentiment"),
row=1, col=1
)
# Confidence histogram
confs = [r['confidence'] for r in results]
fig.add_trace(
go.Histogram(x=confs, nbinsx=8, marker_color='skyblue', name="Confidence"),
row=1, col=2
)
# Sentiment progression
pos_probs = [r.get('pos_prob', 0) for r in results]
indices = list(range(len(results)))
colors_scatter = [theme.colors['pos'] if r['sentiment'] == 'Positive'
else theme.colors['neg'] if r['sentiment'] == 'Negative'
else '#FFA500' for r in results]
fig.add_trace(
go.Scatter(x=indices, y=pos_probs, mode='markers',
marker=dict(color=colors_scatter, size=8),
name="Sentiment Progression"),
row=2, col=1
)
# Add horizontal line at 0.5
fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=2, col=1)
fig.update_layout(
height=800,
width=1000,
showlegend=False,
title_text="Batch Analysis Results"
)
return fig
# Unified Data Handler (unchanged)
class DataHandler:
"""Handles all data operations"""
@staticmethod
@handle_errors(default_return=(None, "Export failed"))
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
"""Universal data export"""
if not data:
return None, "No data to export"
temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False,
suffix=f'.{format_type}', encoding='utf-8')
if format_type == 'csv':
writer = csv.writer(temp_file)
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Pos_Prob', 'Neg_Prob', 'Neutral_Prob', 'Language', 'Key_Words'])
for entry in data:
writer.writerow([
entry.get('timestamp', ''),
entry.get('text', ''),
entry.get('sentiment', ''),
f"{entry.get('confidence', 0):.4f}",
f"{entry.get('pos_prob', 0):.4f}",
f"{entry.get('neg_prob', 0):.4f}",
f"{entry.get('neutral_prob', 0):.4f}",
entry.get('language', ''),
"|".join([f"{word}:{score:.3f}" for word, score in entry.get('key_words', [])])
])
elif format_type == 'json':
json.dump(data, temp_file, indent=2, ensure_ascii=False)
temp_file.close()
return temp_file.name, f"Exported {len(data)} entries"
@staticmethod
@handle_errors(default_return="")
def process_file(file) -> str:
"""Process uploaded file"""
if not file:
return ""
content = file.read().decode('utf-8')
if file.name.endswith('.csv'):
import io
csv_file = io.StringIO(content)
reader = csv.reader(csv_file)
try:
next(reader)
texts = []
for row in reader:
if row and row[0].strip():
text = row[0].strip().strip('"')
if text:
texts.append(text)
return '\n'.join(texts)
except Exception as e:
lines = content.strip().split('\n')[1:]
texts = []
for line in lines:
if line.strip():
text = line.strip().strip('"')
if text:
texts.append(text)
return '\n'.join(texts)
return content
# Main Application with Multi-language Support
class SentimentApp:
"""Main application orchestrator with multi-language support"""
def __init__(self):
self.engine = SentimentEngine()
self.history = HistoryManager()
self.data_handler = DataHandler()
# Multi-language examples
self.examples = [
["While the film's visual effects were undeniably impressive, the story lacked emotional weight, and the pacing felt inconsistent throughout."],
["这部电影的视觉效果令人印象深刻,但故事缺乏情感深度,节奏感也不够连贯。"],
["Aunque los efectos visuales de la película fueron innegablemente impresionantes, la historia carecía de peso emocional."],
["Bien que les effets visuels du film soient indéniablement impressionnants, l'histoire manquait de poids émotionnel."],
["An extraordinary achievement in filmmaking — the direction was masterful, the script was sharp, and every performance added depth and realism."]
]
@handle_errors(default_return=("Please enter text", None, None, None, None))
def analyze_single(self, text: str, model_key: str = 'multilingual', theme: str = 'default'):
"""Single text analysis with multi-language support"""
if not text.strip():
return "Please enter text", None, None, None, None
result = self.engine.analyze_single(text, model_key)
# Add to history
self.history.add({
'text': text[:100],
'full_text': text,
**result
})
# Create visualizations
theme_ctx = ThemeContext(theme)
prob_plot = PlotFactory.create_sentiment_bars(result, theme_ctx)
gauge_plot = PlotFactory.create_confidence_gauge(result['confidence'], result['sentiment'], theme_ctx)
cloud_plot = PlotFactory.create_wordcloud_plot(text, result['sentiment'], theme_ctx)
keyword_plot = PlotFactory.create_keyword_chart(result['key_words'], result['sentiment'], theme_ctx)
# Format result text with key words
key_words_str = ", ".join([f"{word}({score:.3f})" for word, score in result['key_words'][:5]])
result_text = (f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.3f})\n"
f"Language: {result['language']}\n"
f"Key Words: {key_words_str}")
return result_text, prob_plot, gauge_plot, cloud_plot, keyword_plot
@handle_errors(default_return=None)
def analyze_batch(self, reviews: str, model_key: str = 'multilingual', progress=None):
"""Batch analysis with multi-language support"""
if not reviews.strip():
return None
texts = [r.strip() for r in reviews.split('\n') if r.strip()]
if len(texts) < 2:
return None
results = self.engine.analyze_batch(texts, model_key, progress)
# Add to history
for result in results:
self.history.add(result)
# Create visualization
theme_ctx = ThemeContext('default')
return PlotFactory.create_batch_analysis(results, theme_ctx)
@handle_errors(default_return=(None, "No history available"))
def plot_history(self, theme: str = 'default'):
"""Plot analysis history using Plotly"""
history = self.history.get_all()
if len(history) < 2:
return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
theme_ctx = ThemeContext(theme)
# Create subplots
fig = make_subplots(
rows=2, cols=1,
subplot_titles=['Sentiment History', 'Confidence Over Time'],
vertical_spacing=0.12
)
indices = list(range(len(history)))
pos_probs = [item.get('pos_prob', 0) for item in history]
confs = [item['confidence'] for item in history]
# Sentiment trend
colors = [theme_ctx.colors['pos'] if p > 0.5 else theme_ctx.colors['neg'] for p in pos_probs]
fig.add_trace(
go.Scatter(
x=indices,
y=pos_probs,
mode='markers+lines',
marker=dict(color=colors, size=8),
line=dict(color='gray', width=2),
name='Sentiment Trend'
),
row=1, col=1
)
# Add horizontal line at 0.5
fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=1, col=1)
# Confidence trend
fig.add_trace(
go.Bar(
x=indices,
y=confs,
marker_color='lightblue',
marker_line_color='navy',
marker_line_width=1,
name='Confidence'
),
row=2, col=1
)
fig.update_layout(
height=800,
width=1000,
showlegend=False,
title_text="Analysis History"
)
fig.update_xaxes(title_text="Analysis Number", row=2, col=1)
fig.update_yaxes(title_text="Positive Probability", row=1, col=1)
fig.update_yaxes(title_text="Confidence", row=2, col=1)
return fig, f"History: {len(history)} analyses"
# Gradio Interface Setup with Multi-language Support
def create_interface():
"""Create streamlined Gradio interface with multi-language support"""
app = SentimentApp()
with gr.Blocks(theme=gr.themes.Soft(), title="Multi-language Sentiment Analyzer") as demo:
gr.Markdown("# 🌍 AI Multi-language Sentiment Analyzer")
gr.Markdown("Advanced sentiment analysis supporting multiple languages with Plotly visualizations and key word extraction")
with gr.Tab("Single Analysis"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Review Text (Multiple Languages Supported)",
placeholder="Enter your review in any supported language...",
lines=5
)
with gr.Row():
analyze_btn = gr.Button("Analyze", variant="primary")
model_selector = gr.Dropdown(
choices=[
('Auto-detect', 'multilingual'),
('Multilingual', 'multilingual'),
('English', 'english'),
('Chinese 中文', 'chinese'),
('Spanish Español', 'spanish'),
('French Français', 'french')
],
value="multilingual",
label="Language Model"
)
theme_selector = gr.Dropdown(
choices=list(config.THEMES.keys()),
value="default",
label="Theme"
)
gr.Examples(
examples=app.examples,
inputs=text_input,
label="Multi-language Examples"
)
with gr.Column():
result_output = gr.Textbox(label="Analysis Result", lines=4)
with gr.Row():
prob_plot = gr.Plot(label="Sentiment Probabilities")
gauge_plot = gr.Plot(label="Confidence Gauge")
with gr.Row():
wordcloud_plot = gr.Plot(label="Word Cloud")
keyword_plot = gr.Plot(label="Key Contributing Words")
with gr.Tab("Batch Analysis"):
with gr.Row():
with gr.Column():
file_upload = gr.File(label="Upload File", file_types=[".csv", ".txt"])
batch_input = gr.Textbox(
label="Reviews (one per line, mixed languages supported)",
lines=8,
placeholder="Enter multiple reviews, one per line...\nSupports mixed languages in the same batch!"
)
with gr.Column():
load_btn = gr.Button("Load File")
with gr.Row():
batch_btn = gr.Button("Analyze Batch", variant="primary")
batch_model_selector = gr.Dropdown(
choices=[
('Auto-detect', 'multilingual'),
('Multilingual', 'multilingual'),
('English', 'english'),
('Chinese 中文', 'chinese'),
('Spanish Español', 'spanish'),
('French Français', 'french')
],
value="multilingual",
label="Batch Model"
)
batch_plot = gr.Plot(label="Batch Analysis Results")
with gr.Tab("History & Export"):
with gr.Row():
refresh_btn = gr.Button("Refresh History")
clear_btn = gr.Button("Clear History", variant="stop")
status_btn = gr.Button("Show Status")
with gr.Row():
csv_btn = gr.Button("Export CSV")
json_btn = gr.Button("Export JSON")
history_status = gr.Textbox(label="Status Information")
history_plot = gr.Plot(label="History Trends")
csv_file = gr.File(label="CSV Download", visible=True)
json_file = gr.File(label="JSON Download", visible=True)
with gr.Tab("Model Information"):
gr.Markdown("""
## Supported Languages and Models
| Language | Model | Description |
|----------|-------|-------------|
| **Multilingual** | XLM-RoBERTa | Supports 100+ languages automatically |
| **English** | RoBERTa-base | Optimized for English text |
| **Chinese 中文** | RoBERTa-Chinese | Specialized for Chinese language |
| **Spanish Español** | BETO | Fine-tuned for Spanish sentiment |
| **French Français** | tf-allocine | Trained on French movie reviews |
### Features:
- **Automatic Language Detection**: The system can automatically detect the input language
- **Attention-based Keywords**: Extract words that contribute most to sentiment prediction
- **Interactive Visualizations**: Plotly-powered charts and graphs
- **Batch Processing**: Analyze multiple texts at once
- **Export Capabilities**: Save results in CSV or JSON format
- **Multi-language Support**: Mix different languages in batch analysis
""")
# Event bindings
analyze_btn.click(
app.analyze_single,
inputs=[text_input, model_selector, theme_selector],
outputs=[result_output, prob_plot, gauge_plot, wordcloud_plot, keyword_plot]
)
load_btn.click(
app.data_handler.process_file,
inputs=file_upload,
outputs=batch_input
)
batch_btn.click(
app.analyze_batch,
inputs=[batch_input, batch_model_selector],
outputs=batch_plot
)
refresh_btn.click(
lambda theme: app.plot_history(theme),
inputs=theme_selector,
outputs=[history_plot, history_status]
)
clear_btn.click(
lambda: f"Cleared {app.history.clear()} entries",
outputs=history_status
)
status_btn.click(
lambda: f"History: {app.history.size()} entries | Available Models: {', '.join(config.MODELS.keys())}",
outputs=history_status
)
csv_btn.click(
lambda: app.data_handler.export_data(app.history.get_all(), 'csv'),
outputs=[csv_file, history_status]
)
json_btn.click(
lambda: app.data_handler.export_data(app.history.get_all(), 'json'),
outputs=[json_file, history_status]
)
return demo
# Application Entry Point
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)