Spaces:
Runtime error
Runtime error
import os | |
import json | |
import sys | |
import argparse | |
from typing import Dict, List, Optional | |
from pathlib import Path | |
from tqdm import tqdm | |
# 添加必要的路径 | |
root_path = os.path.dirname(os.path.abspath(__file__)) | |
print(root_path) | |
sys.path.append(root_path) | |
sys.path.append(os.path.join(root_path, "Models/ProTrek")) | |
# 导入所需模块 | |
from interproscan import InterproScan | |
from Bio.Blast.Applications import NcbiblastpCommandline | |
from utils.utils import extract_interproscan_metrics, get_seqnid, extract_blast_metrics, rename_interproscan_keys | |
from go_integration_pipeline import GOIntegrationPipeline | |
from utils.generate_protein_prompt import generate_prompt, get_interpro_manager, get_lmdb_connection | |
from utils.openai_access import call_chatgpt | |
class IntegratedProteinPipeline: | |
def __init__(self, | |
blast_database: str = "uniprot_swissprot", | |
expect_value: float = 0.01, | |
interproscan_path: str = "interproscan/interproscan-5.75-106.0/interproscan.sh", | |
interproscan_libraries: List[str] = None, | |
go_topk: int = 2, | |
selected_info_types: List[str] = None, | |
pfam_descriptions_path: str = None, | |
go_info_path: str = None, | |
interpro_data_path: str = None, | |
lmdb_path: str = None, | |
args: argparse.Namespace = None): | |
""" | |
整合蛋白质分析管道 | |
Args: | |
blast_database: BLAST数据库名称 | |
expect_value: BLAST E-value阈值 | |
interproscan_path: InterProScan程序路径 | |
interproscan_libraries: InterProScan库列表 | |
go_topk: GO整合的topk参数 | |
selected_info_types: prompt生成时选择的信息类型 | |
pfam_descriptions_path: Pfam描述文件路径 | |
go_info_path: GO信息文件路径 | |
interpro_data_path: InterPro数据文件路径 | |
lmdb_path: LMDB数据库路径 | |
""" | |
self.blast_database = blast_database | |
self.expect_value = expect_value | |
self.interproscan_path = interproscan_path | |
self.interproscan_libraries = interproscan_libraries or [ | |
"PFAM", "PIRSR", "PROSITE_PROFILES", "SUPERFAMILY", "PRINTS", | |
"PANTHER", "CDD", "GENE3D", "NCBIFAM", "SFLM", "MOBIDB_LITE", | |
"COILS", "PROSITE_PATTERNS", "FUNFAM", "SMART" | |
] | |
self.go_topk = go_topk | |
self.selected_info_types = selected_info_types or ['motif', 'go'] | |
# 文件路径配置 | |
self.pfam_descriptions_path = pfam_descriptions_path | |
self.go_info_path = go_info_path | |
self.interpro_data_path = interpro_data_path | |
self.lmdb_path = lmdb_path | |
self.interproscan_info_path = args.interproscan_info_path | |
self.blast_info_path = args.blast_info_path | |
# 初始化GO整合管道 | |
self.go_pipeline = GOIntegrationPipeline(topk=self.go_topk) | |
# 初始化InterPro管理器(如果需要) | |
self.interpro_manager = None | |
other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']] | |
if other_types and self.interpro_data_path: | |
self.interpro_manager = get_interpro_manager(self.interpro_data_path, None) | |
def step1_run_blast_and_interproscan(self, input_fasta: str, temp_dir: str = "temp") -> tuple: | |
""" | |
步骤1: 运行BLAST和InterProScan分析 | |
Args: | |
input_fasta: 输入FASTA文件路径 | |
temp_dir: 临时文件目录 | |
Returns: | |
tuple: (interproscan_info, blast_info) | |
""" | |
print("步骤1: 运行BLAST和InterProScan分析...") | |
# 创建临时目录 | |
os.makedirs(temp_dir, exist_ok=True) | |
# 获取序列字典 | |
seq_dict = get_seqnid(input_fasta) | |
print(f"读取到 {len(seq_dict)} 个序列") | |
# 运行BLAST | |
print("运行BLAST分析...") | |
blast_xml = os.path.join(temp_dir, "blast_results.xml") | |
blast_cmd = NcbiblastpCommandline( | |
query=input_fasta, | |
db=self.blast_database, | |
out=blast_xml, | |
outfmt=5, # XML格式 | |
evalue=self.expect_value | |
) | |
blast_cmd() | |
# 提取BLAST结果 | |
blast_results = extract_blast_metrics(blast_xml) | |
blast_info = {} | |
for uid, info in blast_results.items(): | |
blast_info[uid] = {"sequence": seq_dict[uid], "blast_results": info} | |
# 运行InterProScan | |
print("运行InterProScan分析...") | |
interproscan_json = os.path.join(temp_dir, "interproscan_results.json") | |
interproscan = InterproScan(self.interproscan_path) | |
input_args = { | |
"fasta_file": input_fasta, | |
"goterms": True, | |
"pathways": True, | |
"save_dir": interproscan_json | |
} | |
interproscan.run(**input_args) | |
# 提取InterProScan结果 | |
interproscan_results = extract_interproscan_metrics( | |
interproscan_json, | |
librarys=self.interproscan_libraries | |
) | |
interproscan_info = {} | |
for id, seq in seq_dict.items(): | |
info = interproscan_results[seq] | |
info = rename_interproscan_keys(info) | |
interproscan_info[id] = {"sequence": seq, "interproscan_results": info} | |
# 清理临时文件 | |
if os.path.exists(blast_xml): | |
os.remove(blast_xml) | |
if os.path.exists(interproscan_json): | |
os.remove(interproscan_json) | |
print(f"步骤1完成: 处理了 {len(interproscan_info)} 个蛋白质") | |
return interproscan_info, blast_info | |
def step2_integrate_go_information(self, interproscan_info: Dict, blast_info: Dict) -> Dict: | |
""" | |
步骤2: 整合GO信息 | |
Args: | |
interproscan_info: InterProScan结果 | |
blast_info: BLAST结果 | |
Returns: | |
Dict: 整合后的GO信息 | |
""" | |
print("步骤2: 整合GO信息...") | |
# 使用GO整合管道进行第一层筛选 | |
protein_go_dict = self.go_pipeline.first_level_filtering(interproscan_info, blast_info) | |
print(f"步骤2完成: 为 {len(protein_go_dict)} 个蛋白质整合了GO信息") | |
return protein_go_dict | |
def step3_generate_prompts(self, interproscan_info: Dict, blast_info: Dict, | |
protein_go_dict: Dict) -> Dict: | |
""" | |
步骤3: 生成蛋白质prompt | |
Args: | |
interproscan_info: InterProScan结果 | |
blast_info: BLAST结果 | |
protein_go_dict: 整合的GO信息 | |
Returns: | |
Dict: 蛋白质ID到prompt的映射(如果有lmdb则包含QA对) | |
""" | |
print("步骤3: 生成蛋白质prompt...") | |
# 创建临时的GO整合文件格式(用于generate_prompt函数) | |
temp_go_data = {} | |
for protein_id, go_ids in protein_go_dict.items(): | |
temp_go_data[protein_id] = go_ids | |
prompts_data = {} | |
if self.lmdb_path: | |
# 如果有lmdb路径,处理QA数据 | |
from utils.generate_protein_prompt import get_qa_data | |
global_index = 0 | |
for protein_id in tqdm(interproscan_info.keys(), desc="生成prompts"): | |
# 获取QA对 | |
qa_pairs = get_qa_data(protein_id, self.lmdb_path) | |
for qa_pair in qa_pairs: | |
question = qa_pair['question'] | |
ground_truth = qa_pair['ground_truth'] | |
# 生成prompt(需要修改generate_prompt函数以支持内存数据) | |
prompt = self._generate_prompt_from_memory( | |
protein_id, interproscan_info, temp_go_data, question | |
) | |
if prompt: | |
prompts_data[global_index] = { | |
"index": global_index, | |
"protein_id": protein_id, | |
"prompt": prompt, | |
"question": question, | |
"ground_truth": ground_truth | |
} | |
global_index += 1 | |
else: | |
# 如果没有lmdb路径,按原来的方式处理 | |
for protein_id in tqdm(interproscan_info.keys(), desc="生成prompts"): | |
prompt = self._generate_prompt_from_memory( | |
protein_id, interproscan_info, temp_go_data | |
) | |
if prompt: | |
prompts_data[protein_id] = prompt | |
print(f"步骤3完成: 生成了 {len(prompts_data)} 个prompt") | |
return prompts_data | |
def _generate_prompt_from_memory(self, protein_id: str, interproscan_info: Dict, | |
protein_go_dict: Dict, question: str = None) -> str: | |
""" | |
从内存中的数据生成prompt,包含完整的motif和GO定义 | |
""" | |
try: | |
from utils.protein_go_analysis import get_go_definition | |
from jinja2 import Template | |
from utils.generate_protein_prompt import get_prompt_template | |
# 获取GO分析结果 | |
go_ids = protein_go_dict.get(protein_id, []) | |
go_annotations = [] | |
all_related_definitions = {} | |
if go_ids: | |
for go_id in go_ids: | |
# 确保GO ID格式正确 | |
clean_go_id = go_id.split(":")[-1] if ":" in go_id else go_id | |
go_annotations.append({"go_id": clean_go_id}) | |
# 获取GO定义 | |
definition = get_go_definition(clean_go_id,self.go_info_path) | |
if definition: | |
all_related_definitions[clean_go_id] = definition | |
# 获取motif信息 | |
motif_pfam = {} | |
if self.pfam_descriptions_path: | |
try: | |
# 从interproscan结果中提取pfam信息 | |
interproscan_results = interproscan_info[protein_id].get('interproscan_results', {}) | |
pfam_entries = interproscan_results.get('pfam_id', []) | |
# 加载pfam描述 | |
with open(self.pfam_descriptions_path, 'r') as f: | |
pfam_descriptions = json.load(f) | |
# 构建motif_pfam字典 | |
for entry in pfam_entries: | |
for pfam_id, ipr_id in entry.items(): | |
if pfam_id and pfam_id in pfam_descriptions: | |
motif_pfam[pfam_id] = pfam_descriptions[pfam_id]['description'] | |
except Exception as e: | |
print(f"获取motif信息时出错: {str(e)}") | |
# 获取InterPro描述信息 | |
interpro_descriptions = {} | |
other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']] | |
if other_types and self.interpro_manager: | |
interpro_descriptions = self.interpro_manager.get_description(protein_id, other_types) | |
# 准备模板数据 | |
template_data = { | |
"protein_id": protein_id, | |
"selected_info_types": self.selected_info_types, | |
"go_data": { | |
"status": "success" if go_annotations else "no_data", | |
"go_annotations": go_annotations, | |
"all_related_definitions": all_related_definitions | |
}, | |
"motif_pfam": motif_pfam, | |
"interpro_descriptions": interpro_descriptions, | |
"question": question | |
} | |
# 使用模板生成prompt | |
PROMPT_TEMPLATE = get_prompt_template(self.selected_info_types, self.lmdb_path) | |
template = Template(PROMPT_TEMPLATE) | |
return template.render(**template_data) | |
except Exception as e: | |
print(f"生成prompt时出错 (protein_id: {protein_id}): {str(e)}") | |
# 如果出错,返回简化版本的prompt | |
return self._generate_simple_prompt(protein_id, interproscan_info, protein_go_dict, question) | |
def _generate_simple_prompt(self, protein_id: str, interproscan_info: Dict, | |
protein_go_dict: Dict, question: str = None) -> str: | |
""" | |
生成简化版本的prompt(作为备用) | |
""" | |
# 获取蛋白质序列 | |
sequence = interproscan_info[protein_id].get('sequence', '') | |
# 获取GO信息 | |
go_ids = protein_go_dict.get(protein_id, []) | |
# 获取motif信息 | |
interproscan_results = interproscan_info[protein_id].get('interproscan_results', {}) | |
pfam_entries = interproscan_results.get('pfam_id', []) | |
# 简化的prompt生成逻辑 | |
prompt_parts = [] | |
if self.lmdb_path: | |
from utils.prompts import FUNCTION_PROMPT | |
prompt_parts.append(FUNCTION_PROMPT) | |
else: | |
from utils.prompts import ENZYME_PROMPT | |
prompt_parts.append(ENZYME_PROMPT) | |
prompt_parts.append("\ninput information:") | |
# 添加motif信息 | |
if 'motif' in self.selected_info_types and pfam_entries: | |
prompt_parts.append("\nmotif:") | |
for entry in pfam_entries: | |
for key, value in entry.items(): | |
if value: | |
prompt_parts.append(f"{value}: 无详细描述") | |
# 添加GO信息 | |
if 'go' in self.selected_info_types and go_ids: | |
prompt_parts.append("\nGO:") | |
for i, go_id in enumerate(go_ids[:10], 1): | |
prompt_parts.append(f"▢ GO term{i}: {go_id}") | |
prompt_parts.append(f"• definition: 无详细定义") | |
if question: | |
prompt_parts.append(f"\nquestion: \n{question}") | |
return "\n".join(prompt_parts) | |
def step4_generate_llm_answers(self, prompts_data: Dict, save_dir: str) -> None: | |
""" | |
步骤4: 生成LLM答案 | |
Args: | |
prompts_data: prompt数据 | |
save_dir: 保存目录 | |
""" | |
print("步骤4: 生成LLM答案...") | |
# 创建保存目录 | |
os.makedirs(save_dir, exist_ok=True) | |
if self.lmdb_path: | |
# 如果有lmdb路径,处理QA数据 | |
for index, qa_item in tqdm(prompts_data.items(), desc="生成LLM答案"): | |
try: | |
protein_id = qa_item['protein_id'] | |
prompt = qa_item['prompt'] | |
question = qa_item['question'] | |
ground_truth = qa_item['ground_truth'] | |
# 调用LLM生成答案 | |
llm_response = call_chatgpt(prompt) | |
# 构建结果数据 | |
result = { | |
'protein_id': protein_id, | |
'index': index, | |
'question': question, | |
'ground_truth': ground_truth, | |
'llm_answer': llm_response | |
} | |
# 保存文件 | |
save_path = os.path.join(save_dir, f"{protein_id}_{index}.json") | |
with open(save_path, 'w') as f: | |
json.dump(result, f, indent=2, ensure_ascii=False) | |
except Exception as e: | |
print(f"处理索引 {index} 时出错: {str(e)}") | |
else: | |
# 如果没有lmdb路径,按原来的方式处理 | |
for protein_id, prompt in tqdm(prompts_data.items(), desc="生成LLM答案"): | |
try: | |
# 调用LLM生成答案 | |
llm_response = call_chatgpt(prompt) | |
# 构建结果数据 | |
result = { | |
'protein_id': protein_id, | |
'prompt': prompt, | |
'llm_answer': llm_response | |
} | |
# 保存文件 | |
save_path = os.path.join(save_dir, f"{protein_id}.json") | |
with open(save_path, 'w') as f: | |
json.dump(result, f, indent=2, ensure_ascii=False) | |
except Exception as e: | |
print(f"处理蛋白质 {protein_id} 时出错: {str(e)}") | |
print(f"步骤4完成: 结果已保存到 {save_dir}") | |
def run(self, input_fasta: str, output_dir: str, temp_dir: str = "temp"): | |
""" | |
运行完整的工作流 | |
Args: | |
input_fasta: 输入FASTA文件路径 | |
output_dir: 输出目录 | |
temp_dir: 临时文件目录 | |
""" | |
print(f"开始运行整合蛋白质分析管道...") | |
print(f"输入文件: {input_fasta}") | |
print(f"输出目录: {output_dir}") | |
# 创建输出目录 | |
os.makedirs(output_dir, exist_ok=True) | |
try: | |
# 步骤1: 运行BLAST和InterProScan | |
if self.interproscan_info_path is None or self.blast_info_path is None: | |
interproscan_info, blast_info = self.step1_run_blast_and_interproscan( | |
input_fasta, temp_dir | |
) | |
else: | |
interproscan_info = json.load(open(self.interproscan_info_path)) | |
blast_info = json.load(open(self.blast_info_path)) | |
# 步骤2: 整合GO信息 | |
protein_go_dict = self.step2_integrate_go_information( | |
interproscan_info, blast_info | |
) | |
# 步骤3: 生成prompt | |
prompts_data = self.step3_generate_prompts( | |
interproscan_info, blast_info, protein_go_dict | |
) | |
print(prompts_data) | |
# 步骤4: 生成LLM答案 | |
self.step4_generate_llm_answers(prompts_data, output_dir) | |
print("整合管道运行完成!") | |
except Exception as e: | |
print(f"管道运行出错: {str(e)}") | |
raise | |
finally: | |
# 清理临时目录 | |
print(f"清理临时目录: {temp_dir}") | |
if os.path.exists(temp_dir): | |
import shutil | |
shutil.rmtree(temp_dir) | |
def main(): | |
parser = argparse.ArgumentParser(description="整合蛋白质分析管道") | |
parser.add_argument("--input_fasta", type=str, required=True, help="输入FASTA文件路径") | |
parser.add_argument("--output_dir", type=str, required=True, help="输出目录") | |
parser.add_argument("--temp_dir", type=str, default="temp", help="临时文件目录") | |
parser.add_argument('--interproscan_info_path', type=str, default=None, help="InterProScan结果文件路径") | |
parser.add_argument('--blast_info_path', type=str, default=None, help="BLAST结果文件路径") | |
# BLAST参数 | |
parser.add_argument("--blast_database", type=str, default="uniprot_swissprot", help="BLAST数据库") | |
parser.add_argument("--expect_value", type=float, default=0.01, help="BLAST E-value阈值") | |
# InterProScan参数 | |
parser.add_argument("--interproscan_path", type=str, | |
default="interproscan/interproscan-5.75-106.0/interproscan.sh", | |
help="InterProScan程序路径") | |
# GO整合参数 | |
parser.add_argument("--go_topk", type=int, default=2, help="GO整合topk参数") | |
# Prompt生成参数 | |
parser.add_argument("--selected_info_types", type=str, nargs='+', | |
default=['motif', 'go'], help="选择的信息类型") | |
parser.add_argument("--pfam_descriptions_path", type=str, default='data/raw_data/all_pfam_descriptions.json', help="Pfam描述文件路径") | |
parser.add_argument("--go_info_path", type=str, default='data/raw_data/go.json', help="GO信息文件路径") | |
parser.add_argument("--interpro_data_path", type=str, default='data/raw_data/interpro_data.json', help="InterPro数据文件路径") | |
parser.add_argument("--lmdb_path", type=str, help="LMDB数据库路径") | |
args = parser.parse_args() | |
# 创建管道实例 | |
pipeline = IntegratedProteinPipeline( | |
blast_database=args.blast_database, | |
expect_value=args.expect_value, | |
interproscan_path=args.interproscan_path, | |
go_topk=args.go_topk, | |
selected_info_types=args.selected_info_types, | |
pfam_descriptions_path=args.pfam_descriptions_path, | |
go_info_path=args.go_info_path, | |
interpro_data_path=args.interpro_data_path, | |
lmdb_path=args.lmdb_path, | |
args=args | |
) | |
# 运行管道 | |
pipeline.run(args.input_fasta, args.output_dir, args.temp_dir) | |
if __name__ == "__main__": | |
main() |