File size: 14,012 Bytes
bbf45d0
 
 
 
caa5704
9c451ee
98b7de8
bbf45d0
98b7de8
bbf45d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa5704
 
 
 
 
 
 
 
 
98b7de8
 
 
 
9c451ee
 
 
 
bbf45d0
98b7de8
 
9c451ee
bbf45d0
98b7de8
 
9c451ee
bbf45d0
98b7de8
 
9c451ee
 
bbf45d0
98b7de8
 
9c451ee
bbf45d0
98b7de8
 
9c451ee
bbf45d0
98b7de8
 
9c451ee
bbf45d0
98b7de8
 
9c451ee
bbf45d0
98b7de8
 
9c451ee
bbf45d0
caa5704
98b7de8
caa5704
 
 
 
 
98b7de8
 
 
 
 
 
 
 
caa5704
 
 
bbf45d0
 
 
 
 
 
 
 
 
 
 
 
9c451ee
 
 
 
 
 
27c66d1
9c451ee
 
 
caa5704
9c451ee
 
 
 
caa5704
9c451ee
 
caa5704
9c451ee
 
 
 
 
 
caa5704
9c451ee
 
caa5704
27c66d1
 
 
 
9c451ee
 
 
caa5704
9c451ee
 
 
 
 
 
 
 
caa5704
9c451ee
 
caa5704
9c451ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa5704
9c451ee
 
 
 
 
98b7de8
 
9c451ee
 
 
bbf45d0
caa5704
bbf45d0
caa5704
9c451ee
 
 
3043125
9c451ee
 
bbf45d0
 
27c66d1
98b7de8
 
 
 
 
 
 
caa5704
98b7de8
 
 
 
caa5704
98b7de8
caa5704
98b7de8
 
caa5704
bbf45d0
9c451ee
 
98b7de8
bbf45d0
9c451ee
bbf45d0
caa5704
 
9c451ee
3043125
bbf45d0
caa5704
98b7de8
bbf45d0
 
 
3043125
9c451ee
 
bbf45d0
 
 
9c451ee
bbf45d0
9c451ee
 
bbf45d0
 
 
 
 
 
9c451ee
 
bbf45d0
caa5704
bbf45d0
 
 
 
9c451ee
 
bbf45d0
caa5704
 
 
 
9c451ee
98b7de8
9c451ee
 
 
 
 
 
 
 
 
caa5704
27c66d1
 
 
51362b4
27c66d1
 
bbf45d0
9c451ee
bbf45d0
 
 
9c451ee
bbf45d0
27c66d1
9c451ee
caa5704
9c451ee
 
bbf45d0
 
 
caa5704
bbf45d0
 
 
 
 
caa5704
 
 
9c451ee
27c66d1
 
 
 
 
 
9c451ee
 
 
bbf45d0
9c451ee
bbf45d0
caa5704
27c66d1
 
bbf45d0
9c451ee
 
 
 
 
3043125
9c451ee
 
 
 
 
 
 
 
 
 
4d0811f
9c451ee
3043125
4d0811f
3043125
4d0811f
3043125
4d0811f
3043125
4d0811f
9c451ee
4d0811f
9c451ee
 
4d0811f
27c66d1
 
 
 
9c451ee
 
bbf45d0
 
 
 
 
 
caa5704
bbf45d0
 
 
 
 
 
 
 
98b7de8
bbf45d0
98b7de8
caa5704
98b7de8
bbf45d0
 
 
 
 
 
 
 
 
 
caa5704
9c451ee
27c66d1
caa5704
bbf45d0
9c451ee
bbf45d0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import json
import gradio as gr
import pandas as pd
import plotly.express as px
import os
import numpy as np
import io

# Define pipeline tags
PIPELINE_TAGS = [
 'text-generation',
 'text-to-image',
 'text-classification',
 'text2text-generation',
 'audio-to-audio',
 'feature-extraction',
 'image-classification',
 'translation',
 'reinforcement-learning',
 'fill-mask',
 'text-to-speech',
 'automatic-speech-recognition',
 'image-text-to-text',
 'token-classification',
 'sentence-similarity',
 'question-answering',
 'image-feature-extraction',
 'summarization',
 'zero-shot-image-classification',
 'object-detection',
 'image-segmentation',
 'image-to-image',
 'image-to-text',
 'audio-classification',
 'visual-question-answering',
 'text-to-video',
 'zero-shot-classification',
 'depth-estimation',
 'text-ranking',
 'image-to-video',
 'multiple-choice',
 'unconditional-image-generation',
 'video-classification',
 'text-to-audio',
 'time-series-forecasting',
 'any-to-any',
 'video-text-to-text',
 'table-question-answering',
]

# Model size categories in GB
MODEL_SIZE_RANGES = {
    "Small (<1GB)": (0, 1),
    "Medium (1-5GB)": (1, 5),
    "Large (5-20GB)": (5, 20),
    "X-Large (20-50GB)": (20, 50),
    "XX-Large (>50GB)": (50, float('inf'))
}

# Filter functions for tags
def is_audio_speech(row):
    tags = row.get("tags", [])
    pipeline_tag = row.get("pipeline_tag", "")
    
    return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \
           any("audio" in tag.lower() for tag in tags) or \
           any("speech" in tag.lower() for tag in tags)

def is_music(row):
    tags = row.get("tags", [])
    return any("music" in tag.lower() for tag in tags)

def is_robotics(row):
    tags = row.get("tags", [])
    return any("robot" in tag.lower() for tag in tags)

def is_biomed(row):
    tags = row.get("tags", [])
    return any("bio" in tag.lower() for tag in tags) or \
           any("medic" in tag.lower() for tag in tags)

def is_timeseries(row):
    tags = row.get("tags", [])
    return any("series" in tag.lower() for tag in tags)

def is_science(row):
    tags = row.get("tags", [])
    return any("science" in tag.lower() and "bigscience" not in tag for tag in tags)

def is_video(row):
    tags = row.get("tags", [])
    return any("video" in tag.lower() for tag in tags)

def is_image(row):
    tags = row.get("tags", [])
    return any("image" in tag.lower() for tag in tags)

def is_text(row):
    tags = row.get("tags", [])
    return any("text" in tag.lower() for tag in tags)

# Add model size filter function
def is_in_size_range(row, size_range):
    if size_range is None:
        return True
    
    min_size, max_size = MODEL_SIZE_RANGES[size_range]
    
    # Get model size in GB from params column
    if "params" in row and pd.notna(row["params"]):
        try:
            # Convert to GB (assuming params are in bytes or scientific notation)
            size_gb = float(row["params"]) / (1024 * 1024 * 1024)
            return min_size <= size_gb < max_size
        except (ValueError, TypeError):
            return False
    
    return False

TAG_FILTER_FUNCS = {
    "Audio & Speech": is_audio_speech,
    "Time series": is_timeseries,
    "Robotics": is_robotics,
    "Music": is_music,
    "Video": is_video,
    "Images": is_image,
    "Text": is_text,
    "Biomedical": is_biomed,
    "Sciences": is_science,
}

def extract_org_from_id(model_id):
    """Extract organization name from model ID"""
    if "/" in model_id:
        return model_id.split("/")[0]
    return "unaffiliated"

def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
    """Process DataFrame into treemap format with filters applied"""
    # Create a copy to avoid modifying the original
    filtered_df = df.copy()
    
    # Apply filters
    if tag_filter and tag_filter in TAG_FILTER_FUNCS:
        filter_func = TAG_FILTER_FUNCS[tag_filter]
        filtered_df = filtered_df[filtered_df.apply(filter_func, axis=1)]
    
    if pipeline_filter:
        filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter]
    
    if size_filter and size_filter in MODEL_SIZE_RANGES:
        # Create a function to check if a model is in the size range
        def check_size(row):
            return is_in_size_range(row, size_filter)
        
        filtered_df = filtered_df[filtered_df.apply(check_size, axis=1)]
    
    # Add organization column
    filtered_df["organization"] = filtered_df["id"].apply(extract_org_from_id)
    
    # Skip organizations if specified
    if skip_orgs and len(skip_orgs) > 0:
        filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
    
    # Aggregate by organization
    org_totals = filtered_df.groupby("organization")[count_by].sum().reset_index()
    org_totals = org_totals.sort_values(by=count_by, ascending=False)
    
    # Get top organizations
    top_orgs = org_totals.head(top_k)["organization"].tolist()
    
    # Filter to only include models from top organizations
    filtered_df = filtered_df[filtered_df["organization"].isin(top_orgs)]
    
    # Prepare data for treemap
    treemap_data = filtered_df[["id", "organization", count_by]].copy()
    
    # Add a root node
    treemap_data["root"] = "models"
    
    # Ensure numeric values
    treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0)
    
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    """Create a Plotly treemap from the prepared data"""
    if treemap_data.empty:
        # Create an empty figure with a message
        fig = px.treemap(
            names=["No data matches the selected filters"],
            values=[1]
        )
        fig.update_layout(
            title="No data matches the selected filters",
            margin=dict(t=50, l=25, r=25, b=25)
        )
        return fig
    
    # Create the treemap
    fig = px.treemap(
        treemap_data,
        path=["root", "organization", "id"],
        values=count_by,
        title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
        color_discrete_sequence=px.colors.qualitative.Plotly
    )
    
    # Update layout
    fig.update_layout(
        margin=dict(t=50, l=25, r=25, b=25)
    )
    
    # Update traces for better readability
    fig.update_traces(
        textinfo="label+value+percent root",
        hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>"
    )
    
    return fig

def load_models_csv():    
    # Read the CSV file
    df = pd.read_csv('models.csv')
    
    # Process the tags column 
    def process_tags(tags_str):
        if pd.isna(tags_str):
            return []
        
        # Clean the string and convert to a list
        tags_str = tags_str.strip("[]").replace("'", "")
        tags = [tag.strip() for tag in tags_str.split() if tag.strip()]
        return tags
    
    df['tags'] = df['tags'].apply(process_tags)
    
    return df

# Create Gradio interface
with gr.Blocks() as demo:
    models_data = gr.State()  # To store loaded data
    
    with gr.Row():
        gr.Markdown("""
            # HuggingFace Models TreeMap Visualization
            
            This app shows how different organizations contribute to the HuggingFace ecosystem with their models.
            Use the filters to explore models by different metrics, tags, pipelines, and model sizes.
            
            The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (downloads or likes).
        """)
    
    with gr.Row():
        with gr.Column(scale=1):
            count_by_dropdown = gr.Dropdown(
                label="Metric",
                choices=["downloads", "likes"],
                value="downloads",
                info="Select the metric to determine box sizes"
            )
            
            filter_choice_radio = gr.Radio(
                label="Filter Type",
                choices=["None", "Tag Filter", "Pipeline Filter"],
                value="None",
                info="Choose how to filter the models"
            )
            
            tag_filter_dropdown = gr.Dropdown(
                label="Select Tag",
                choices=list(TAG_FILTER_FUNCS.keys()),
                value=None,
                visible=False,
                info="Filter models by domain/category"
            )
            
            pipeline_filter_dropdown = gr.Dropdown(
                label="Select Pipeline Tag",
                choices=PIPELINE_TAGS,
                value=None,
                visible=False,
                info="Filter models by specific pipeline"
            )
            
            size_filter_dropdown = gr.Dropdown(
                label="Model Size Filter",
                choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
                value="None",
                info="Filter models by their size (using params column)"
            )

            top_k_slider = gr.Slider(
                label="Number of Top Organizations",
                minimum=5,
                maximum=50,
                value=25,
                step=5,
                info="Number of top organizations to include"
            )
            
            skip_orgs_textbox = gr.Textbox(
                label="Organizations to Skip (comma-separated)",
                placeholder="e.g., TheBloke, MaziyarPanahi, unsloth, modularai, Gensyn, bartowski",
                info="Enter names of organizations to exclude from the visualization"
            )

            generate_plot_button = gr.Button("Generate Plot", variant="primary")

        with gr.Column(scale=3):
            plot_output = gr.Plot()
            stats_output = gr.Markdown("*Generate a plot to see statistics*")

    def generate_plot_on_click(count_by, filter_choice, tag_filter, pipeline_filter, size_filter, top_k, skip_orgs_text, data_df):
        print(f"Generating plot with: Metric={count_by}, Filter={filter_choice}, Tag={tag_filter}, Pipeline={pipeline_filter}, Size={size_filter}, Top K={top_k}")
        
        if data_df is None or len(data_df) == 0:
            return None, "Error: No data available. Please try again."
        
        selected_tag_filter = None
        selected_pipeline_filter = None
        selected_size_filter = None

        if filter_choice == "Tag Filter":
            selected_tag_filter = tag_filter
        elif filter_choice == "Pipeline Filter":
            selected_pipeline_filter = pipeline_filter
        
        if size_filter != "None":
            selected_size_filter = size_filter
        
        # Process skip organizations list
        skip_orgs = []
        if skip_orgs_text and skip_orgs_text.strip():
            skip_orgs = [org.strip() for org in skip_orgs_text.split(',') if org.strip()]
            print(f"Skipping organizations: {skip_orgs}")
        
        # Process data for treemap
        treemap_data = make_treemap_data(
            df=data_df,
            count_by=count_by,
            top_k=top_k,
            tag_filter=selected_tag_filter,
            pipeline_filter=selected_pipeline_filter,
            size_filter=selected_size_filter,
            skip_orgs=skip_orgs
        )
        
        # Create plot
        fig = create_treemap(
            treemap_data=treemap_data,
            count_by=count_by,
            title=f"HuggingFace Models - {count_by.capitalize()} by Organization"
        )
        
        # Generate statistics
        if treemap_data.empty:
            stats_md = "No data matches the selected filters."
        else:
            total_models = len(treemap_data)
            total_value = treemap_data[count_by].sum()
            top_5_orgs = treemap_data.groupby("organization")[count_by].sum().sort_values(ascending=False).head(5)
            
            # Format the statistics using clean markdown
            stats_md = f"""
## Statistics
- **Total models shown**: {total_models:,}
- **Total {count_by}**: {int(total_value):,}

## Top Organizations by {count_by.capitalize()}

| Organization | {count_by.capitalize()} | % of Total |
|--------------|--------:|--------:|"""
            
            # Add each organization as a row in the table
            for org, value in top_5_orgs.items():
                percentage = (value / total_value) * 100
                stats_md += f"\n| {org} | {int(value):,} | {percentage:.2f}% |"
            
            # Add note about skipped organizations if any
            if skip_orgs:
                stats_md += f"\n\n*Note: {len(skip_orgs)} organization(s) excluded: {', '.join(skip_orgs)}*"
        
        return fig, stats_md

    def update_filter_visibility(filter_choice):
        if filter_choice == "Tag Filter":
            return gr.update(visible=True), gr.update(visible=False)
        elif filter_choice == "Pipeline Filter":
            return gr.update(visible=False), gr.update(visible=True)
        else:  # "None"
            return gr.update(visible=False), gr.update(visible=False)

    filter_choice_radio.change(
        fn=update_filter_visibility,
        inputs=[filter_choice_radio],
        outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
    )
    
    # Load data once at startup
    demo.load(
        fn=load_models_csv,
        inputs=[], 
        outputs=[models_data]
    )

    # Button click event to generate plot
    generate_plot_button.click(
        fn=generate_plot_on_click,
        inputs=[
            count_by_dropdown,
            filter_choice_radio,
            tag_filter_dropdown,
            pipeline_filter_dropdown,
            size_filter_dropdown,
            top_k_slider,
            skip_orgs_textbox,
            models_data
        ],
        outputs=[plot_output, stats_output]
    )


if __name__ == "__main__":
    demo.launch()