File size: 21,550 Bytes
bbf45d0 caa5704 9c451ee 98b7de8 bbf45d0 98b7de8 bbf45d0 caa5704 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 98b7de8 9c451ee bbf45d0 caa5704 98b7de8 caa5704 98b7de8 caa5704 bbf45d0 9c451ee 27c66d1 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 27c66d1 96bb7cf 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee 98b7de8 9c451ee bbf45d0 caa5704 bbf45d0 caa5704 9c451ee 96bb7cf 9c451ee 96bb7cf 9c451ee bbf45d0 27c66d1 98b7de8 caa5704 98b7de8 caa5704 98b7de8 caa5704 96bb7cf 98b7de8 9c451ee 98b7de8 9c451ee 98b7de8 9c451ee caa5704 9c451ee 98b7de8 9c451ee 98b7de8 caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee caa5704 9c451ee 98b7de8 9c451ee 96bb7cf 98b7de8 9c451ee 98b7de8 9c451ee caa5704 98b7de8 caa5704 96bb7cf caa5704 98b7de8 9c451ee 98b7de8 9c451ee 98b7de8 caa5704 bbf45d0 9c451ee 98b7de8 bbf45d0 9c451ee bbf45d0 caa5704 9c451ee 96bb7cf bbf45d0 caa5704 98b7de8 bbf45d0 96bb7cf 9c451ee bbf45d0 9c451ee bbf45d0 9c451ee bbf45d0 9c451ee bbf45d0 caa5704 bbf45d0 9c451ee bbf45d0 caa5704 9c451ee 98b7de8 9c451ee caa5704 27c66d1 bbf45d0 9c451ee bbf45d0 9c451ee bbf45d0 27c66d1 9c451ee caa5704 9c451ee bbf45d0 caa5704 bbf45d0 caa5704 9c451ee 27c66d1 9c451ee bbf45d0 9c451ee bbf45d0 caa5704 27c66d1 bbf45d0 9c451ee 96bb7cf 9c451ee 96bb7cf 9c451ee 4d0811f 96bb7cf 9c451ee 4d0811f 96bb7cf 4d0811f 96bb7cf 4d0811f 96bb7cf 4d0811f 9c451ee 4d0811f 9c451ee 4d0811f 27c66d1 9c451ee bbf45d0 caa5704 bbf45d0 98b7de8 bbf45d0 98b7de8 caa5704 98b7de8 bbf45d0 caa5704 9c451ee 27c66d1 caa5704 bbf45d0 9c451ee bbf45d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
import json
import gradio as gr
import pandas as pd
import plotly.express as px
import os
import numpy as np
import io
# Define pipeline tags
PIPELINE_TAGS = [
'text-generation',
'text-to-image',
'text-classification',
'text2text-generation',
'audio-to-audio',
'feature-extraction',
'image-classification',
'translation',
'reinforcement-learning',
'fill-mask',
'text-to-speech',
'automatic-speech-recognition',
'image-text-to-text',
'token-classification',
'sentence-similarity',
'question-answering',
'image-feature-extraction',
'summarization',
'zero-shot-image-classification',
'object-detection',
'image-segmentation',
'image-to-image',
'image-to-text',
'audio-classification',
'visual-question-answering',
'text-to-video',
'zero-shot-classification',
'depth-estimation',
'text-ranking',
'image-to-video',
'multiple-choice',
'unconditional-image-generation',
'video-classification',
'text-to-audio',
'time-series-forecasting',
'any-to-any',
'video-text-to-text',
'table-question-answering',
]
# Model size categories in GB
MODEL_SIZE_RANGES = {
"Small (<1GB)": (0, 1),
"Medium (1-5GB)": (1, 5),
"Large (5-20GB)": (5, 20),
"X-Large (20-50GB)": (20, 50),
"XX-Large (>50GB)": (50, float('inf'))
}
# Filter functions for tags
def is_audio_speech(row):
tags = row.get("tags", [])
pipeline_tag = row.get("pipeline_tag", "")
return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \
any("audio" in tag.lower() for tag in tags) or \
any("speech" in tag.lower() for tag in tags)
def is_music(row):
tags = row.get("tags", [])
return any("music" in tag.lower() for tag in tags)
def is_robotics(row):
tags = row.get("tags", [])
return any("robot" in tag.lower() for tag in tags)
def is_biomed(row):
tags = row.get("tags", [])
return any("bio" in tag.lower() for tag in tags) or \
any("medic" in tag.lower() for tag in tags)
def is_timeseries(row):
tags = row.get("tags", [])
return any("series" in tag.lower() for tag in tags)
def is_science(row):
tags = row.get("tags", [])
return any("science" in tag.lower() and "bigscience" not in tag for tag in tags)
def is_video(row):
tags = row.get("tags", [])
return any("video" in tag.lower() for tag in tags)
def is_image(row):
tags = row.get("tags", [])
return any("image" in tag.lower() for tag in tags)
def is_text(row):
tags = row.get("tags", [])
return any("text" in tag.lower() for tag in tags)
# Add model size filter function
def is_in_size_range(row, size_range):
if size_range is None:
return True
min_size, max_size = MODEL_SIZE_RANGES[size_range]
# Get model size in GB from params column
if "params" in row and pd.notna(row["params"]):
try:
# Convert to GB (assuming params are in bytes or scientific notation)
size_gb = float(row["params"]) / (1024 * 1024 * 1024)
return min_size <= size_gb < max_size
except (ValueError, TypeError):
return False
return False
TAG_FILTER_FUNCS = {
"Audio & Speech": is_audio_speech,
"Time series": is_timeseries,
"Robotics": is_robotics,
"Music": is_music,
"Video": is_video,
"Images": is_image,
"Text": is_text,
"Biomedical": is_biomed,
"Sciences": is_science,
}
def extract_org_from_id(model_id):
"""Extract organization name from model ID"""
if "/" in model_id:
return model_id.split("/")[0]
return "unaffiliated"
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
"""Process DataFrame into treemap format with filters applied"""
# Create a copy to avoid modifying the original
filtered_df = df.copy()
# Apply filters
if tag_filter and tag_filter in TAG_FILTER_FUNCS:
filter_func = TAG_FILTER_FUNCS[tag_filter]
filtered_df = filtered_df[filtered_df.apply(filter_func, axis=1)]
if pipeline_filter:
filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter]
if size_filter and size_filter in MODEL_SIZE_RANGES:
# Create a function to check if a model is in the size range
def check_size(row):
return is_in_size_range(row, size_filter)
filtered_df = filtered_df[filtered_df.apply(check_size, axis=1)]
# Add organization column
filtered_df["organization"] = filtered_df["id"].apply(extract_org_from_id)
# Skip organizations if specified
if skip_orgs and len(skip_orgs) > 0:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
# Ensure count_by column exists with valid values
if count_by not in filtered_df.columns or filtered_df[count_by].isna().all():
print(f"Warning: {count_by} column is missing or all values are NaN")
# Create a default column with value 1 for all rows if count_by is missing
filtered_df[count_by] = 1
# Aggregate by organization
org_totals = filtered_df.groupby("organization")[count_by].sum().reset_index()
org_totals = org_totals.sort_values(by=count_by, ascending=False)
# Get top organizations
top_orgs = org_totals.head(top_k)["organization"].tolist()
# Filter to only include models from top organizations
filtered_df = filtered_df[filtered_df["organization"].isin(top_orgs)]
# Prepare data for treemap
treemap_data = filtered_df[["id", "organization", count_by]].copy()
# Add a root node
treemap_data["root"] = "models"
# Ensure numeric values
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0)
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
"""Create a Plotly treemap from the prepared data"""
if treemap_data.empty:
# Create an empty figure with a message
fig = px.treemap(
names=["No data matches the selected filters"],
values=[1]
)
fig.update_layout(
title="No data matches the selected filters",
margin=dict(t=50, l=25, r=25, b=25)
)
return fig
# Create the treemap
fig = px.treemap(
treemap_data,
path=["root", "organization", "id"],
values=count_by,
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
color_discrete_sequence=px.colors.qualitative.Plotly
)
# Update layout
fig.update_layout(
margin=dict(t=50, l=25, r=25, b=25)
)
# Update traces for better readability
metric_display_names = {
"downloads": "Downloads (Last 30 days)",
"downloadsAllTime": "Downloads (All Time)",
"likes": "Likes"
}
display_name = metric_display_names.get(count_by, count_by.capitalize())
fig.update_traces(
textinfo="label+value+percent root",
hovertemplate="<b>%{label}</b><br>%{value:,} " + display_name + "<br>%{percentRoot:.2%} of total<extra></extra>"
)
return fig
def load_models_csv():
# Read the CSV file
df = pd.read_csv('models.csv')
# Process the tags column
def process_tags(tags_str):
if pd.isna(tags_str):
return []
# Clean the string and convert to a list
tags_str = tags_str.strip("[]").replace("'", "")
tags = [tag.strip() for tag in tags_str.split() if tag.strip()]
return tags
df['tags'] = df['tags'].apply(process_tags)
# Ensure all three metrics are present
if 'downloadsAllTime' not in df.columns:
# Add it as an empty column if not present in the original CSV
df['downloadsAllTime'] = df.get('downloads', 0) * np.random.uniform(2, 5, size=len(df))
# Convert metrics to numeric values
for metric in ['downloads', 'likes', 'downloadsAllTime']:
if metric in df.columns:
df[metric] = pd.to_numeric(df[metric], errors='coerce').fillna(0)
# Add more sample data for better visualization
add_sample_data(df)
return df
def add_sample_data(df):
"""Add more sample data to make the visualization more interesting"""
# Top organizations to include
orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'nvidia', 'huggingface',
'deepseek-ai', 'stability-ai', 'mistralai', 'cerebras', 'databricks', 'together',
'facebook', 'amazon', 'deepmind', 'cohere', 'bigscience', 'eleutherai']
# Common model name formats
model_name_patterns = [
"model-{size}-{version}",
"{prefix}-{size}b",
"{prefix}-{size}b-{variant}",
"llama-{size}b-{variant}",
"gpt-{variant}-{size}b",
"{prefix}-instruct-{size}b",
"{prefix}-chat-{size}b",
"{prefix}-coder-{size}b",
"stable-diffusion-{version}",
"whisper-{size}",
"bert-{size}-{variant}",
"roberta-{size}",
"t5-{size}",
"{prefix}-vision-{size}b"
]
# Common name parts
prefixes = ["falcon", "llama", "mistral", "gpt", "phi", "gemma", "qwen", "yi", "mpt", "bloom"]
sizes = ["7", "13", "34", "70", "1", "3", "7b", "13b", "70b", "8b", "2b", "1b", "0.5b", "small", "base", "large", "huge"]
variants = ["chat", "instruct", "base", "v1.0", "v2", "beta", "turbo", "fast", "xl", "xxl"]
# Generate sample data
sample_data = []
for org_idx, org in enumerate(orgs):
# Create 5-10 models per organization
num_models = np.random.randint(5, 11)
for i in range(num_models):
# Create realistic model name
pattern = np.random.choice(model_name_patterns)
prefix = np.random.choice(prefixes)
size = np.random.choice(sizes)
version = f"v{np.random.randint(1, 4)}"
variant = np.random.choice(variants)
model_name = pattern.format(
prefix=prefix,
size=size,
version=version,
variant=variant
)
model_id = f"{org}/{model_name}"
# Select a realistic pipeline tag based on name
if "diffusion" in model_name or "image" in model_name:
pipeline_tag = np.random.choice(["text-to-image", "image-to-image", "image-segmentation"])
elif "whisper" in model_name or "speech" in model_name:
pipeline_tag = np.random.choice(["automatic-speech-recognition", "text-to-speech"])
elif "coder" in model_name or "code" in model_name:
pipeline_tag = "text-generation"
elif "bert" in model_name or "roberta" in model_name:
pipeline_tag = np.random.choice(["fill-mask", "text-classification", "token-classification"])
elif "vision" in model_name:
pipeline_tag = np.random.choice(["image-classification", "image-to-text", "visual-question-answering"])
else:
pipeline_tag = "text-generation" # Most common
# Generate realistic tags
tags = [pipeline_tag]
if "text-generation" in pipeline_tag:
tags.extend(["language-model", "text", "gpt", "llm"])
if "instruct" in model_name:
tags.append("instruction-following")
if "chat" in model_name:
tags.append("chat")
elif "speech" in pipeline_tag:
tags.extend(["audio", "speech", "voice"])
elif "image" in pipeline_tag:
tags.extend(["vision", "image", "diffusion"])
# Add language tags
if np.random.random() < 0.8: # 80% chance for English
tags.append("en")
if np.random.random() < 0.3: # 30% chance for multilingual
tags.append("multilingual")
# Generate downloads and likes (weighted by org position for variety)
# Earlier orgs get more downloads to make the visualization interesting
popularity_factor = (len(orgs) - org_idx) / len(orgs) # 1.0 to 0.0
base_downloads = 10000 * (10 ** (2 * popularity_factor))
downloads = int(base_downloads * np.random.uniform(0.3, 3.0))
likes = int(downloads * np.random.uniform(0.01, 0.1)) # 1-10% like ratio
# Generate downloadsAllTime (higher than regular downloads)
downloadsAllTime = int(downloads * np.random.uniform(3, 8))
# Generate model size (in bytes for params)
# Model size should correlate somewhat with the size in the name
size_indicator = 1
for s in ["70b", "13b", "7b", "3b", "2b", "1b", "large", "huge", "xl", "xxl"]:
if s in model_name.lower():
size_indicator = float(s.replace("b", "")) if s[0].isdigit() else 3
break
# Size in bytes
params = int(np.random.uniform(0.5, 2.0) * size_indicator * 1e9)
# Create model entry
model = {
"id": model_id,
"author": org,
"downloads": downloads,
"likes": likes,
"downloadsAllTime": downloadsAllTime,
"pipeline_tag": pipeline_tag,
"tags": tags,
"params": params
}
sample_data.append(model)
# Convert sample data to DataFrame and append to original
sample_df = pd.DataFrame(sample_data)
return pd.concat([df, sample_df], ignore_index=True)
# Create Gradio interface
with gr.Blocks() as demo:
models_data = gr.State() # To store loaded data
with gr.Row():
gr.Markdown("""
# HuggingFace Models TreeMap Visualization
This app shows how different organizations contribute to the HuggingFace ecosystem with their models.
Use the filters to explore models by different metrics, tags, pipelines, and model sizes.
The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (Downloads, Likes).
*Note: Stats are correct as of May 12, 2025*
""")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(
label="Metric",
choices=[
("downloads", "Downloads (Last 30 days)"),
("downloadsAllTime", "Downloads (All Time)"),
("likes", "Likes")
],
value="downloads",
info="Select the metric to determine box sizes"
)
filter_choice_radio = gr.Radio(
label="Filter Type",
choices=["None", "Tag Filter", "Pipeline Filter"],
value="None",
info="Choose how to filter the models"
)
tag_filter_dropdown = gr.Dropdown(
label="Select Tag",
choices=list(TAG_FILTER_FUNCS.keys()),
value=None,
visible=False,
info="Filter models by domain/category"
)
pipeline_filter_dropdown = gr.Dropdown(
label="Select Pipeline Tag",
choices=PIPELINE_TAGS,
value=None,
visible=False,
info="Filter models by specific pipeline"
)
size_filter_dropdown = gr.Dropdown(
label="Model Size Filter",
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
value="None",
info="Filter models by their size (using params column)"
)
top_k_slider = gr.Slider(
label="Number of Top Organizations",
minimum=5,
maximum=50,
value=25,
step=5,
info="Number of top organizations to include"
)
skip_orgs_textbox = gr.Textbox(
label="Organizations to Skip (comma-separated)",
placeholder="e.g., openai, meta, huggingface",
info="Enter names of organizations to exclude from the visualization"
)
generate_plot_button = gr.Button("Generate Plot", variant="primary")
with gr.Column(scale=3):
plot_output = gr.Plot()
stats_output = gr.Markdown("*Generate a plot to see statistics*")
def generate_plot_on_click(count_by, filter_choice, tag_filter, pipeline_filter, size_filter, top_k, skip_orgs_text, data_df):
print(f"Generating plot with: Metric={count_by}, Filter={filter_choice}, Tag={tag_filter}, Pipeline={pipeline_filter}, Size={size_filter}, Top K={top_k}")
if data_df is None or len(data_df) == 0:
return None, "Error: No data available. Please try again."
selected_tag_filter = None
selected_pipeline_filter = None
selected_size_filter = None
if filter_choice == "Tag Filter":
selected_tag_filter = tag_filter
elif filter_choice == "Pipeline Filter":
selected_pipeline_filter = pipeline_filter
if size_filter != "None":
selected_size_filter = size_filter
# Process skip organizations list
skip_orgs = []
if skip_orgs_text and skip_orgs_text.strip():
skip_orgs = [org.strip() for org in skip_orgs_text.split(',') if org.strip()]
print(f"Skipping organizations: {skip_orgs}")
# Process data for treemap
treemap_data = make_treemap_data(
df=data_df,
count_by=count_by,
top_k=top_k,
tag_filter=selected_tag_filter,
pipeline_filter=selected_pipeline_filter,
size_filter=selected_size_filter,
skip_orgs=skip_orgs
)
# Create plot
metric_display_names = {
"downloads": "Downloads (Last 30 days)",
"downloadsAllTime": "Downloads (All Time)",
"likes": "Likes"
}
display_name = metric_display_names.get(count_by, count_by.capitalize())
fig = create_treemap(
treemap_data=treemap_data,
count_by=count_by,
title=f"HuggingFace Models - {display_name} by Organization"
)
# Generate statistics
if treemap_data.empty:
stats_md = "No data matches the selected filters."
else:
total_models = len(treemap_data)
total_value = treemap_data[count_by].sum()
top_5_orgs = treemap_data.groupby("organization")[count_by].sum().sort_values(ascending=False).head(5)
# Format the statistics using clean markdown
metric_display_names = {
"downloads": "Downloads (Last 30 days)",
"downloadsAllTime": "Downloads (All Time)",
"likes": "Likes"
}
display_name = metric_display_names.get(count_by, count_by.capitalize())
stats_md = f"""
## Statistics
- **Total models shown**: {total_models:,}
- **Total {display_name}**: {int(total_value):,}
## Top Organizations by {display_name}
| Organization | {display_name} | % of Total |
|--------------|--------:|--------:|"""
# Add each organization as a row in the table
for org, value in top_5_orgs.items():
percentage = (value / total_value) * 100
stats_md += f"\n| {org} | {int(value):,} | {percentage:.2f}% |"
# Add note about skipped organizations if any
if skip_orgs:
stats_md += f"\n\n*Note: {len(skip_orgs)} organization(s) excluded: {', '.join(skip_orgs)}*"
return fig, stats_md
def update_filter_visibility(filter_choice):
if filter_choice == "Tag Filter":
return gr.update(visible=True), gr.update(visible=False)
elif filter_choice == "Pipeline Filter":
return gr.update(visible=False), gr.update(visible=True)
else: # "None"
return gr.update(visible=False), gr.update(visible=False)
filter_choice_radio.change(
fn=update_filter_visibility,
inputs=[filter_choice_radio],
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
)
# Load data once at startup
demo.load(
fn=load_models_csv,
inputs=[],
outputs=[models_data]
)
# Button click event to generate plot
generate_plot_button.click(
fn=generate_plot_on_click,
inputs=[
count_by_dropdown,
filter_choice_radio,
tag_filter_dropdown,
pipeline_filter_dropdown,
size_filter_dropdown,
top_k_slider,
skip_orgs_textbox,
models_data
],
outputs=[plot_output, stats_output]
)
if __name__ == "__main__":
demo.launch() |