Image-to-3D / app.py
frogleo's picture
着手业务逻辑
3c7b849
raw
history blame
6.42 kB
import os
import spaces
import random
import shutil
import gradio as gr
from glob import glob
from pathlib import Path
import uuid
import argparse
import torch
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache_path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = True
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def gen_save_folder(max_size=200):
os.makedirs(SAVE_DIR, exist_ok=True)
# 获取所有文件夹路径
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
if len(dirs) >= max_size:
# 按创建时间排序,最久的排在前面
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
# 生成一个新的 uuid 文件夹名称
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=True,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
progress=gr.Progress()
@spaces.GPU(duration=60)
def gen_shape(
image=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
num_chunks=200000,
target_face_num=10000,
randomize_seed: bool = False,
):
def callback(step_idx, timestep, outputs):
progress_value = (step_idx+1.0)/steps
progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")
if image is None:
raise gr.Error("Please provide either a caption or an image.")
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
save_folder = gen_save_folder()
image = rmbg_worker(image.convert('RGB'))
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh',
callback=callback
)
print(outputs)
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
example_imgs = get_example_img_list()
HTML_OUTPUT_PLACEHOLDER = f"""
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
<div style='text-align: center; font-size: 16px; color: #6b7280;'>
<p style="color: #8d8d8d;">No mesh here.</p>
</div>
</div>
"""
MAX_SEED = 1e7
title = "## Image to 3D"
description = "A lightweight image to 3D converter"
with gr.Blocks().queue() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("#### Image Prompt")
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
gen_button = gr.Button(value='Generate Shape', variant='primary')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
with gr.Column():
cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale')
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks')
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number')
with gr.Column(scale=6):
gr.Markdown("#### Generated Mesh")
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Column(scale=3):
gr.Markdown("#### Image Examples")
gr.Examples(examples=example_imgs, inputs=[image],
label=None, examples_per_page=18)
gen_button.click(
fn=gen_shape,
inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed],
outputs=[html_export_mesh]
)
demo.launch()