Spaces:
Sleeping
Sleeping
File size: 3,531 Bytes
03836f6 d881f5c d405ed8 df690e6 d405ed8 587fb3d d405ed8 d881f5c d405ed8 df690e6 d405ed8 df690e6 d881f5c d405ed8 d881f5c d405ed8 d881f5c d405ed8 d881f5c d405ed8 d881f5c d405ed8 d881f5c d405ed8 d881f5c df690e6 d881f5c d405ed8 df690e6 d405ed8 d881f5c d405ed8 d881f5c d405ed8 d881f5c d405ed8 d881f5c df690e6 d405ed8 d881f5c df690e6 d881f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import os
import json
import requests
from PIL import Image
import torch
import gradio as gr
from ppt_parser import transfer_to_structure
from transformers import AutoProcessor, Llama4ForConditionalGeneration
# β
Hugging Face token
hf_token = os.getenv("HF_TOKEN")
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
# β
Load model & processor
processor = AutoProcessor.from_pretrained(model_id, token=hf_token)
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
token=hf_token,
attn_implementation="flex_attention",
device_map="auto",
torch_dtype=torch.bfloat16,
)
# β
Global storage
extracted_text = ""
image_paths = []
def extract_text_from_pptx_json(parsed_json: dict) -> str:
text = ""
for slide in parsed_json.values():
for shape in slide.values():
if shape.get("type") == "group":
for group_shape in shape.get("group_content", {}).values():
if group_shape.get("type") == "text":
for para_key, para in group_shape.items():
if para_key.startswith("paragraph_"):
text += para.get("text", "") + "\n"
elif shape.get("type") == "text":
for para_key, para in shape.items():
if para_key.startswith("paragraph_"):
text += para.get("text", "") + "\n"
return text.strip()
# β
Handle uploaded PPTX
def handle_pptx_upload(pptx_file):
global extracted_text, image_paths
tmp_path = pptx_file.name
parsed_json_str, image_paths = transfer_to_structure(tmp_path, "images")
parsed_json = json.loads(parsed_json_str)
extracted_text = extract_text_from_pptx_json(parsed_json)
return extracted_text or "No readable text found in slides."
# β
Multimodal Q&A using Scout
def ask_llama(question):
global extracted_text, image_paths
if not extracted_text and not image_paths:
return "Please upload and extract a PPTX first."
# π§ Build multimodal chat messages
messages = [
{
"role": "user",
"content": [],
}
]
# Add up to 2 images to prevent OOM
for path in image_paths[:2]:
messages[0]["content"].append({"type": "image", "image": Image.open(path)})
messages[0]["content"].append({
"type": "text",
"text": f"{extracted_text}\n\nQuestion: {question}"
})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
response = processor.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])[0]
return response.strip()
# β
Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π§ Multimodal Llama 4 Scout Study Assistant")
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"])
extract_btn = gr.Button("π Extract Text + Images")
extracted_output = gr.Textbox(label="π Slide Text", lines=10, interactive=False)
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output])
question = gr.Textbox(label="β Ask a Question")
ask_btn = gr.Button("π¬ Ask Llama 4 Scout")
ai_answer = gr.Textbox(label="π€ Answer", lines=6)
ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer])
if __name__ == "__main__":
demo.launch() |