Spaces:
Sleeping
Sleeping
import os | |
import json | |
import requests | |
from PIL import Image | |
import torch | |
import gradio as gr | |
from ppt_parser import transfer_to_structure | |
from transformers import AutoProcessor, Llama4ForConditionalGeneration | |
# β Hugging Face token | |
hf_token = os.getenv("HF_TOKEN") | |
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" | |
# β Load model & processor | |
processor = AutoProcessor.from_pretrained(model_id, token=hf_token) | |
model = Llama4ForConditionalGeneration.from_pretrained( | |
model_id, | |
token=hf_token, | |
attn_implementation="flex_attention", | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
# β Global storage | |
extracted_text = "" | |
image_paths = [] | |
def extract_text_from_pptx_json(parsed_json: dict) -> str: | |
text = "" | |
for slide in parsed_json.values(): | |
for shape in slide.values(): | |
if shape.get("type") == "group": | |
for group_shape in shape.get("group_content", {}).values(): | |
if group_shape.get("type") == "text": | |
for para_key, para in group_shape.items(): | |
if para_key.startswith("paragraph_"): | |
text += para.get("text", "") + "\n" | |
elif shape.get("type") == "text": | |
for para_key, para in shape.items(): | |
if para_key.startswith("paragraph_"): | |
text += para.get("text", "") + "\n" | |
return text.strip() | |
# β Handle uploaded PPTX | |
def handle_pptx_upload(pptx_file): | |
global extracted_text, image_paths | |
tmp_path = pptx_file.name | |
parsed_json_str, image_paths = transfer_to_structure(tmp_path, "images") | |
parsed_json = json.loads(parsed_json_str) | |
extracted_text = extract_text_from_pptx_json(parsed_json) | |
return extracted_text or "No readable text found in slides." | |
# β Multimodal Q&A using Scout | |
def ask_llama(question): | |
global extracted_text, image_paths | |
if not extracted_text and not image_paths: | |
return "Please upload and extract a PPTX first." | |
# π§ Build multimodal chat messages | |
messages = [ | |
{ | |
"role": "user", | |
"content": [], | |
} | |
] | |
# Add up to 2 images to prevent OOM | |
for path in image_paths[:2]: | |
messages[0]["content"].append({"type": "image", "image": Image.open(path)}) | |
messages[0]["content"].append({ | |
"type": "text", | |
"text": f"{extracted_text}\n\nQuestion: {question}" | |
}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt" | |
).to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=256) | |
response = processor.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])[0] | |
return response.strip() | |
# β Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## π§ Multimodal Llama 4 Scout Study Assistant") | |
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"]) | |
extract_btn = gr.Button("π Extract Text + Images") | |
extracted_output = gr.Textbox(label="π Slide Text", lines=10, interactive=False) | |
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output]) | |
question = gr.Textbox(label="β Ask a Question") | |
ask_btn = gr.Button("π¬ Ask Llama 4 Scout") | |
ai_answer = gr.Textbox(label="π€ Answer", lines=6) | |
ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer]) | |
if __name__ == "__main__": | |
demo.launch() |