File size: 2,830 Bytes
00b93d3 9144506 00b93d3 2201b09 9144506 00b93d3 9b06638 00b93d3 9144506 2201b09 00b93d3 9144506 b938ae3 9144506 109a86d 9144506 b938ae3 109a86d 9144506 deceec0 00b93d3 9144506 00b93d3 b938ae3 00b93d3 023c7c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
import torch
import cv2
import numpy as np
from torchvision import transforms
from PIL import Image
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
# Load depth estimation model
model_name = "Intel/dpt-large"
feature_extractor = DPTFeatureExtractor.from_pretrained(model_name)
depth_model = DPTForDepthEstimation.from_pretrained(model_name)
depth_model.eval()
def estimate_depth(image):
"""Estimate depth map from image."""
image = image.convert("RGB")
image = image.resize((384, 384)) # Resize for model input
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = depth_model(**inputs)
depth = outputs.predicted_depth.squeeze().cpu().numpy()
depth = cv2.resize(depth, (image.width, image.height)) # Resize back to original
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255
return depth.astype(np.uint8)
def blend_design(cloth_img, design_img):
"""Blend design onto clothing naturally."""
cloth_img = cloth_img.convert("RGB")
design_img = design_img.convert("RGB")
cloth_np = np.array(cloth_img)
design_np = np.array(design_img)
# Resize design to fit within clothing
h, w, _ = cloth_np.shape
dh, dw, _ = design_np.shape
scale_factor = min(w / dw, h / dh) * 0.6 # Scale to 60% of clothing area
new_w, new_h = int(dw * scale_factor), int(dh * scale_factor)
design_np = cv2.resize(design_np, (new_w, new_h))
# Convert design to grayscale and darken
design_gray = cv2.cvtColor(design_np, cv2.COLOR_RGB2GRAY)
design_np = cv2.cvtColor(design_gray, cv2.COLOR_GRAY2RGB)
design_np = cv2.convertScaleAbs(design_np, alpha=1.2, beta=-30) # Increase contrast
# Create a blank canvas and paste the resized design at the center
design_canvas = np.zeros_like(cloth_np)
x_offset = (w - new_w) // 2
y_offset = (h - new_h) // 2
design_canvas[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = design_np
# Estimate depth for fold detection
depth_map = estimate_depth(cloth_img)
depth_map = cv2.resize(depth_map, (w, h))
# Use Poisson blending for seamless integration
mask = (design_canvas > 0).astype(np.uint8) * 255
blended = cv2.seamlessClone(design_canvas, cloth_np, mask, (w//2, h//2), cv2.NORMAL_CLONE)
return Image.fromarray(blended)
def main(cloth, design):
return blend_design(cloth, design)
iface = gr.Interface(
fn=main,
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
outputs=gr.Image(type="pil"),
title="AI Cloth Design Warping",
description="Upload a clothing image and a design to blend it naturally, ensuring it stays centered and follows fabric folds."
)
if __name__ == "__main__":
iface.launch(share=True) |