File size: 2,830 Bytes
00b93d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9144506
 
00b93d3
 
 
2201b09
9144506
00b93d3
9b06638
00b93d3
9144506
 
2201b09
 
00b93d3
 
9144506
 
b938ae3
9144506
 
 
 
 
 
 
 
 
109a86d
9144506
 
 
 
 
 
 
b938ae3
 
109a86d
9144506
 
 
deceec0
00b93d3
 
 
9144506
00b93d3
 
 
 
 
 
b938ae3
00b93d3
 
 
023c7c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import gradio as gr
import torch
import cv2
import numpy as np
from torchvision import transforms
from PIL import Image
from transformers import DPTForDepthEstimation, DPTFeatureExtractor

# Load depth estimation model
model_name = "Intel/dpt-large"
feature_extractor = DPTFeatureExtractor.from_pretrained(model_name)
depth_model = DPTForDepthEstimation.from_pretrained(model_name)
depth_model.eval()

def estimate_depth(image):
    """Estimate depth map from image."""
    image = image.convert("RGB")
    image = image.resize((384, 384))  # Resize for model input
    inputs = feature_extractor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = depth_model(**inputs)
        depth = outputs.predicted_depth.squeeze().cpu().numpy()
    depth = cv2.resize(depth, (image.width, image.height))  # Resize back to original
    depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255
    return depth.astype(np.uint8)

def blend_design(cloth_img, design_img):
    """Blend design onto clothing naturally."""
    cloth_img = cloth_img.convert("RGB")
    design_img = design_img.convert("RGB")
    cloth_np = np.array(cloth_img)
    design_np = np.array(design_img)
    
    # Resize design to fit within clothing
    h, w, _ = cloth_np.shape
    dh, dw, _ = design_np.shape
    scale_factor = min(w / dw, h / dh) * 0.6  # Scale to 60% of clothing area
    new_w, new_h = int(dw * scale_factor), int(dh * scale_factor)
    design_np = cv2.resize(design_np, (new_w, new_h))
    
    # Convert design to grayscale and darken
    design_gray = cv2.cvtColor(design_np, cv2.COLOR_RGB2GRAY)
    design_np = cv2.cvtColor(design_gray, cv2.COLOR_GRAY2RGB)
    design_np = cv2.convertScaleAbs(design_np, alpha=1.2, beta=-30)  # Increase contrast
    
    # Create a blank canvas and paste the resized design at the center
    design_canvas = np.zeros_like(cloth_np)
    x_offset = (w - new_w) // 2
    y_offset = (h - new_h) // 2
    design_canvas[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = design_np
    
    # Estimate depth for fold detection
    depth_map = estimate_depth(cloth_img)
    depth_map = cv2.resize(depth_map, (w, h))
    
    # Use Poisson blending for seamless integration
    mask = (design_canvas > 0).astype(np.uint8) * 255
    blended = cv2.seamlessClone(design_canvas, cloth_np, mask, (w//2, h//2), cv2.NORMAL_CLONE)
    
    return Image.fromarray(blended)

def main(cloth, design):
    return blend_design(cloth, design)

iface = gr.Interface(
    fn=main,
    inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
    outputs=gr.Image(type="pil"),
    title="AI Cloth Design Warping",
    description="Upload a clothing image and a design to blend it naturally, ensuring it stays centered and follows fabric folds."
)

if __name__ == "__main__":
    iface.launch(share=True)