File size: 8,616 Bytes
7f0f123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8913d
 
 
 
7f0f123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8913d
 
 
 
 
7f0f123
 
 
 
aa8913d
7f0f123
 
aa8913d
 
 
 
 
7f0f123
 
 
aa8913d
 
 
 
 
 
 
 
 
 
7f0f123
 
aa8913d
 
 
 
 
 
 
 
 
 
 
7f0f123
 
 
 
 
aa8913d
7f0f123
 
 
 
 
 
 
 
aa8913d
7f0f123
 
 
aa8913d
7f0f123
 
aa8913d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0f123
 
 
 
 
 
aa8913d
7f0f123
 
 
 
 
 
aa8913d
7f0f123
aa8913d
 
7f0f123
 
 
 
 
aa8913d
7f0f123
aa8913d
 
 
 
 
 
 
7f0f123
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io

from depth_anything.dpt import DepthAnything_AC


def normalize_depth(disparity_tensor):
    """Standard normalization method to convert disparity to depth"""
    eps = 1e-6
    disparity_min = disparity_tensor.min()
    disparity_max = disparity_tensor.max()
    normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
    return normalized_disparity


def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
    """Load trained depth estimation model"""
    model_configs = {
        'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
        'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
        'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
    }
    
    model = DepthAnything_AC(model_configs[encoder])
    
    if os.path.exists(model_path):
        checkpoint = torch.load(model_path, map_location='cpu')
        model.load_state_dict(checkpoint, strict=False)
    else:
        print(f"Warning: Model file {model_path} not found")
        
    model.eval()
    if torch.cuda.is_available():
        model.cuda()
    
    return model


def preprocess_image(image, target_size=518):
    """Preprocess input image"""
    if isinstance(image, Image.Image):
        image = np.array(image)
    
    if len(image.shape) == 3 and image.shape[2] == 3:
        pass
    elif len(image.shape) == 3 and image.shape[2] == 4:
        image = image[:, :, :3]
    
    image = image.astype(np.float32) / 255.0
    h, w = image.shape[:2]
    scale = target_size / min(h, w)
    new_h, new_w = int(h * scale), int(w * scale)
    
    new_h = ((new_h + 13) // 14) * 14
    new_w = ((new_w + 13) // 14) * 14
    image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)

    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = (image - mean) / std

    image = torch.from_numpy(image.transpose(2, 0, 1)).float()
    image = image.unsqueeze(0)
    
    return image, (h, w)


def postprocess_depth(depth_tensor, original_size):
    """Post-process depth map"""
    if depth_tensor.dim() == 3:
        depth_tensor = depth_tensor.unsqueeze(1)
    elif depth_tensor.dim() == 2:
        depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
    
    h, w = original_size
    depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
    depth = depth.squeeze().cpu().numpy()
    
    return depth


def create_colored_depth_map(depth, colormap='spectral'):
    """Create colored depth map"""
    if colormap == 'inferno':
        depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
        depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
    elif colormap == 'spectral':
        from matplotlib import cm
        spectral_cmap = cm.get_cmap('Spectral_r')
        depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
        depth_colored = depth_colored[:, :, :3]
    else:
        depth_colored = (depth * 255).astype(np.uint8)
        depth_colored = np.stack([depth_colored] * 3, axis=2)
    
    return depth_colored


print("Loading model...")
model = load_model()
print("Model loaded successfully!")


def predict_depth(input_image, colormap_choice):
    """Main depth prediction function"""
    try:
        # Handle case when no image is provided
        if input_image is None:
            return None
            
        image_tensor, original_size = preprocess_image(input_image)
        
        if torch.cuda.is_available():
            image_tensor = image_tensor.cuda()
        
        with torch.no_grad():
            prediction = model(image_tensor)
            disparity_tensor = prediction['out']
            depth_tensor = normalize_depth(disparity_tensor)
        
        depth = postprocess_depth(depth_tensor, original_size)
        
        depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
        
        return Image.fromarray(depth_colored)
        
    except Exception as e:
        print(f"Error during inference: {str(e)}")
        return None


def capture_and_predict(camera_image, colormap_choice):
    """Capture image from camera and predict depth"""
    return predict_depth(camera_image, colormap_choice)


with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🌊 Depth Anything AC - Depth Estimation Demo
    
    Upload an image or use your camera to generate corresponding depth maps! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
    
    ## How to Use
    1. **Upload Mode**: Click the upload area to select an image file
    2. **Camera Mode**: Use your camera to capture a live image
    3. Choose your preferred colormap style
    4. Click the "Generate Depth Map" button
    5. View the results and download
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            # Input source selection
            input_source = gr.Radio(
                choices=["Upload Image", "Use Camera"],
                value="Upload Image",
                label="Input Source"
            )
            
            # Upload image component
            upload_image = gr.Image(
                label="Upload Image",
                type="pil",
                height=450,
                visible=True
            )
            
            # Camera component
            camera_image = gr.Image(
                label="Camera Input",
                type="pil", 
                source="webcam",
                height=450,
                visible=False
            )
            
            colormap_choice = gr.Dropdown(
                choices=["Spectral", "Inferno", "Gray"],
                value="Spectral",
                label="Colormap Style"
            )
            
            submit_btn = gr.Button(
                "🎯 Generate Depth Map",
                variant="primary",
                size="lg"
            )
            
        with gr.Column(scale=1):
            output_image = gr.Image(
                label="Depth Map Result",
                type="pil",
                height=450
            )
    
    # Function to switch between upload and camera input
    def switch_input_source(source):
        if source == "Upload Image":
            return gr.update(visible=True), gr.update(visible=False)
        else:
            return gr.update(visible=False), gr.update(visible=True)
    
    # Update visibility based on input source selection
    input_source.change(
        fn=switch_input_source,
        inputs=[input_source],
        outputs=[upload_image, camera_image]
    )
    
    # Function to handle both input sources
    def handle_prediction(input_source, upload_img, camera_img, colormap):
        if input_source == "Upload Image":
            return predict_depth(upload_img, colormap)
        else:
            return predict_depth(camera_img, colormap)
    
    # Examples section
    gr.Examples(
        examples=[
            ["toyset/1.png", "Spectral"],
            ["toyset/2.png", "Spectral"],
            ["toyset/good.png", "Spectral"],
        ] if os.path.exists("toyset") else [],
        inputs=[upload_image, colormap_choice],
        outputs=output_image,
        fn=predict_depth,
        cache_examples=False,
        label="Try these example images"
    )
    
    # Submit button click handler
    submit_btn.click(
        fn=handle_prediction,
        inputs=[input_source, upload_image, camera_image, colormap_choice],
        outputs=output_image,
        show_progress=True
    )
    
    gr.Markdown("""
    ## πŸ“ Color Map Descriptions
    - **Spectral**: Rainbow spectrum with distinct near-far contrast
    - **Inferno**: Flame spectrum with warm tones  
    - **Gray**: Classic grayscale depth representation
    
    ## πŸ“· Camera Tips
    - Make sure to allow camera access when prompted
    - Click the camera button to capture the current frame
    - The captured image will be used as input for depth estimation
    """)


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )