Spaces:
Running
Running
File size: 8,616 Bytes
7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 aa8913d 7f0f123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io
from depth_anything.dpt import DepthAnything_AC
def normalize_depth(disparity_tensor):
"""Standard normalization method to convert disparity to depth"""
eps = 1e-6
disparity_min = disparity_tensor.min()
disparity_max = disparity_tensor.max()
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
return normalized_disparity
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
"""Load trained depth estimation model"""
model_configs = {
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
}
model = DepthAnything_AC(model_configs[encoder])
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location='cpu')
model.load_state_dict(checkpoint, strict=False)
else:
print(f"Warning: Model file {model_path} not found")
model.eval()
if torch.cuda.is_available():
model.cuda()
return model
def preprocess_image(image, target_size=518):
"""Preprocess input image"""
if isinstance(image, Image.Image):
image = np.array(image)
if len(image.shape) == 3 and image.shape[2] == 3:
pass
elif len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3]
image = image.astype(np.float32) / 255.0
h, w = image.shape[:2]
scale = target_size / min(h, w)
new_h, new_w = int(h * scale), int(w * scale)
new_h = ((new_h + 13) // 14) * 14
new_w = ((new_w + 13) // 14) * 14
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
image = image.unsqueeze(0)
return image, (h, w)
def postprocess_depth(depth_tensor, original_size):
"""Post-process depth map"""
if depth_tensor.dim() == 3:
depth_tensor = depth_tensor.unsqueeze(1)
elif depth_tensor.dim() == 2:
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
h, w = original_size
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
depth = depth.squeeze().cpu().numpy()
return depth
def create_colored_depth_map(depth, colormap='spectral'):
"""Create colored depth map"""
if colormap == 'inferno':
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
elif colormap == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_colored = depth_colored[:, :, :3]
else:
depth_colored = (depth * 255).astype(np.uint8)
depth_colored = np.stack([depth_colored] * 3, axis=2)
return depth_colored
print("Loading model...")
model = load_model()
print("Model loaded successfully!")
def predict_depth(input_image, colormap_choice):
"""Main depth prediction function"""
try:
# Handle case when no image is provided
if input_image is None:
return None
image_tensor, original_size = preprocess_image(input_image)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
depth = postprocess_depth(depth_tensor, original_size)
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
return Image.fromarray(depth_colored)
except Exception as e:
print(f"Error during inference: {str(e)}")
return None
def capture_and_predict(camera_image, colormap_choice):
"""Capture image from camera and predict depth"""
return predict_depth(camera_image, colormap_choice)
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Depth Anything AC - Depth Estimation Demo
Upload an image or use your camera to generate corresponding depth maps! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
## How to Use
1. **Upload Mode**: Click the upload area to select an image file
2. **Camera Mode**: Use your camera to capture a live image
3. Choose your preferred colormap style
4. Click the "Generate Depth Map" button
5. View the results and download
""")
with gr.Row():
with gr.Column(scale=1):
# Input source selection
input_source = gr.Radio(
choices=["Upload Image", "Use Camera"],
value="Upload Image",
label="Input Source"
)
# Upload image component
upload_image = gr.Image(
label="Upload Image",
type="pil",
height=450,
visible=True
)
# Camera component
camera_image = gr.Image(
label="Camera Input",
type="pil",
source="webcam",
height=450,
visible=False
)
colormap_choice = gr.Dropdown(
choices=["Spectral", "Inferno", "Gray"],
value="Spectral",
label="Colormap Style"
)
submit_btn = gr.Button(
"π― Generate Depth Map",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
output_image = gr.Image(
label="Depth Map Result",
type="pil",
height=450
)
# Function to switch between upload and camera input
def switch_input_source(source):
if source == "Upload Image":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
# Update visibility based on input source selection
input_source.change(
fn=switch_input_source,
inputs=[input_source],
outputs=[upload_image, camera_image]
)
# Function to handle both input sources
def handle_prediction(input_source, upload_img, camera_img, colormap):
if input_source == "Upload Image":
return predict_depth(upload_img, colormap)
else:
return predict_depth(camera_img, colormap)
# Examples section
gr.Examples(
examples=[
["toyset/1.png", "Spectral"],
["toyset/2.png", "Spectral"],
["toyset/good.png", "Spectral"],
] if os.path.exists("toyset") else [],
inputs=[upload_image, colormap_choice],
outputs=output_image,
fn=predict_depth,
cache_examples=False,
label="Try these example images"
)
# Submit button click handler
submit_btn.click(
fn=handle_prediction,
inputs=[input_source, upload_image, camera_image, colormap_choice],
outputs=output_image,
show_progress=True
)
gr.Markdown("""
## π Color Map Descriptions
- **Spectral**: Rainbow spectrum with distinct near-far contrast
- **Inferno**: Flame spectrum with warm tones
- **Gray**: Classic grayscale depth representation
## π· Camera Tips
- Make sure to allow camera access when prompted
- Click the camera button to capture the current frame
- The captured image will be used as input for depth estimation
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |