Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchhub.facebookresearch_dinov2_main.hubconf as dinov2 | |
from depth_anything.util.blocksv2 import FeatureFusionBlock, _make_scratch | |
from torchvision.transforms import Compose | |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
import cv2 | |
import numpy as np | |
def _make_fusion_block(features, use_bn, size = None): | |
return FeatureFusionBlock( | |
features, | |
nn.ReLU(False), | |
deconv=False, | |
bn=use_bn, | |
expand=False, | |
align_corners=True, | |
size=size, | |
) | |
class DPTHead(nn.Module): | |
def __init__(self, nclass, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False): | |
super(DPTHead, self).__init__() | |
self.nclass = nclass | |
self.use_clstoken = use_clstoken | |
self.projects = nn.ModuleList([ | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channel, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) for out_channel in out_channels | |
]) | |
self.resize_layers = nn.ModuleList([ | |
nn.ConvTranspose2d( | |
in_channels=out_channels[0], | |
out_channels=out_channels[0], | |
kernel_size=4, | |
stride=4, | |
padding=0), | |
nn.ConvTranspose2d( | |
in_channels=out_channels[1], | |
out_channels=out_channels[1], | |
kernel_size=2, | |
stride=2, | |
padding=0), | |
nn.Identity(), | |
nn.Conv2d( | |
in_channels=out_channels[3], | |
out_channels=out_channels[3], | |
kernel_size=3, | |
stride=2, | |
padding=1) | |
]) | |
if use_clstoken: | |
self.readout_projects = nn.ModuleList() | |
for _ in range(len(self.projects)): | |
self.readout_projects.append( | |
nn.Sequential( | |
nn.Linear(2 * in_channels, in_channels), | |
nn.GELU())) | |
self.scratch = _make_scratch( | |
out_channels, | |
features, | |
groups=1, | |
expand=False, | |
) | |
self.scratch.stem_transpose = nn.Identity() | |
self.scratch.refinenet1 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet2 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet3 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet4 = _make_fusion_block(features, use_bn) | |
head_features_1 = features | |
head_features_2 = 32 | |
if nclass > 1: | |
self.scratch.output_conv = nn.Sequential( | |
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(True), | |
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0), | |
) | |
else: | |
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) | |
self.scratch.output_conv2 = nn.Sequential( | |
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(True), | |
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), | |
nn.ReLU(True), | |
nn.Identity(), | |
) | |
def forward(self, out_features, patch_h, patch_w,need_fp=False,need_prior=False,teacher_features=None,alpha=0.8): | |
depth_out={} | |
out = [] | |
for i, x in enumerate(out_features): | |
if self.use_clstoken: | |
x, cls_token = x[0], x[1] | |
readout = cls_token.unsqueeze(1).expand_as(x) | |
x = self.readout_projects[i](torch.cat((x, readout), -1)) | |
else: | |
x = x[0] | |
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous() | |
x = self.projects[i](x) | |
x = self.resize_layers[i](x) | |
out.append(x) | |
layer_1, layer_2, layer_3, layer_4 = out | |
layer_1_rn = self.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.scratch.layer4_rn(layer_4) | |
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | |
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) | |
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) | |
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
out = self.scratch.output_conv1(path_1) | |
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) | |
out = self.scratch.output_conv2(out) | |
depth_out['out']=out | |
return depth_out | |
class DPT_DINOv2(nn.Module): | |
def __init__(self, encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], use_bn=False, use_clstoken=False, localhub=True, version='v1'): | |
super(DPT_DINOv2, self).__init__() | |
assert encoder in ['vits', 'vitb', 'vitl'] | |
self.intermediate_layer_idx = { | |
'vits': [2, 5, 8, 11], | |
'vitb': [2, 5, 8, 11], | |
'vitl': [4, 11, 17, 23], | |
'vitg': [9, 19, 29, 39] | |
} | |
self.encoder = encoder | |
self.version = version | |
# in case the Internet connection is not stable, please load the DINOv2 locally | |
# if localhub: | |
# self.pretrained = torch.hub.load('torchhub/facebookresearch_dinov2_main', 'dinov2_{:}14'.format(encoder), source='local', pretrained=True) | |
# else: | |
# self.pretrained = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder)) | |
self.pretrained = dinov2.__dict__['dinov2_{:}14'.format(encoder)](pretrained=True) | |
dim = self.pretrained.blocks[0].attn.qkv.in_features | |
self.depth_head = DPTHead(1, dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken) | |
def forward(self, x,need_fp=False,teacher_features=None,alpha=0.8,prior_mode='teacher'): | |
depth_out={} | |
h, w = x.shape[-2:] | |
if self.version == 'v1': | |
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True) | |
else: | |
features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True) | |
patch_h, patch_w = h // 14, w // 14 | |
depth_all = self.depth_head(features, patch_h, patch_w,need_fp,teacher_features,alpha) | |
depth=depth_all['out'] | |
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True) | |
depth = F.relu(depth).squeeze(1) | |
depth_out['out']=depth | |
return depth_out | |
class DepthAnything_AC(DPT_DINOv2): | |
def __init__(self, config): | |
super().__init__(**config) | |
def get_intermediate_features(self, x): | |
""" | |
Extract intermediate features from the model | |
Args: | |
x: Input tensor of shape (B, C, H, W) | |
Returns: | |
dict: Dictionary containing intermediate features including: | |
- encoder_features: List of encoder feature maps | |
- decoder_features: List of decoder feature maps | |
- decoder_features_path: List of decoder path features | |
- cls_token: List of classification tokens | |
""" | |
features = { | |
'encoder_features': [], | |
'decoder_features': [], | |
'decoder_features_path': [], | |
'cls_token': [] | |
} | |
h, w = x.shape[-2:] | |
patch_h, patch_w = h // 14, w // 14 | |
all_features = [] | |
for i in range(len(self.pretrained.blocks)): | |
feat = self.pretrained.get_intermediate_layers(x, [i], return_class_token=True)[0] | |
all_features.append(feat) | |
if i in [2, 5, 8, 11]: | |
feat_map = feat[0] | |
B, N, C = feat_map.shape | |
H = W = int(np.sqrt(N)) | |
features['encoder_features'].append(feat_map.reshape(B, H, W, C).permute(0, 3, 1, 2)) | |
out_features = [] | |
for layer_idx in self.intermediate_layer_idx[self.encoder]: | |
out_features.append(all_features[layer_idx]) | |
out = [] | |
for i, feat in enumerate(out_features): | |
if self.depth_head.use_clstoken: | |
feat_map, cls_token = feat[0], feat[1] | |
readout = cls_token.unsqueeze(1).expand_as(feat_map) | |
feat_map = self.depth_head.readout_projects[i](torch.cat((feat_map, readout), -1)) | |
features['cls_token'].append(cls_token) | |
else: | |
feat_map = feat[0] | |
feat_map = feat_map.permute(0, 2, 1).reshape((feat_map.shape[0], feat_map.shape[-1], patch_h, patch_w)).contiguous() | |
feat_map = self.depth_head.projects[i](feat_map) | |
feat_map = self.depth_head.resize_layers[i](feat_map) | |
out.append(feat_map) | |
layer_1, layer_2, layer_3, layer_4 = out | |
layer_1_rn = self.depth_head.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.depth_head.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.depth_head.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.depth_head.scratch.layer4_rn(layer_4) | |
features['decoder_features'].append(layer_1_rn) | |
features['decoder_features'].append(layer_2_rn) | |
features['decoder_features'].append(layer_3_rn) | |
features['decoder_features'].append(layer_4_rn) | |
path_4 = self.depth_head.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | |
path_3 = self.depth_head.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) | |
path_2 = self.depth_head.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) | |
path_1 = self.depth_head.scratch.refinenet1(path_2, layer_1_rn) | |
features['decoder_features_path'].append(path_1) | |
features['decoder_features_path'].append(path_2) | |
features['decoder_features_path'].append(path_3) | |
features['decoder_features_path'].append(path_4) | |
return features | |