File size: 7,752 Bytes
eda95b4
 
 
 
 
 
 
 
d32a7b1
 
eda95b4
 
3ac78f9
d32a7b1
0442793
 
 
d32a7b1
0442793
 
 
 
 
 
eda95b4
 
 
d32a7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda95b4
d32a7b1
 
0442793
d32a7b1
 
 
eda95b4
 
d32a7b1
 
 
 
 
 
 
eda95b4
 
 
 
3ac78f9
eda95b4
 
d32a7b1
 
 
 
 
eda95b4
 
 
 
 
 
 
 
 
 
 
d32a7b1
eda95b4
 
d32a7b1
eda95b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac78f9
eda95b4
d32a7b1
 
 
 
 
 
 
 
 
 
da710f3
d32a7b1
 
 
 
 
 
eda95b4
 
 
 
 
3ac78f9
eda95b4
 
 
3ac78f9
 
 
eda95b4
d32a7b1
3ac78f9
eda95b4
3ac78f9
eda95b4
3ac78f9
 
 
 
 
 
 
 
 
 
 
eda95b4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
import matplotlib.pyplot as plt
import seaborn as sns
import time
import io
import re
import os

# Embedded call center FAQs (fixed formatting: escaped quotes, consistent rows)
csv_data = """question,answer,call_id,agent_id,timestamp,language
"How do I reset my password?","Go to the login page, click ""Forgot Password,"" and follow the email instructions.",12345,A001,2025-04-01 10:15:23,en
"What are your pricing plans?","We offer Basic ($10/month), Pro ($50/month), and Enterprise (custom).",12346,A002,2025-04-01 10:17:45,en
"How do I contact support?","Email [email protected] or call +1-800-123-4567.",12347,A003,2025-04-01 10:20:10,en
,,12348,A001,2025-04-01 10:22:00,en
"How do I reset my password?","Duplicate answer.",12349,A002,2025-04-01 10:25:30,en
"help","Contact us.",12350,A004,2025-04-01 10:27:15,en
"What is the refund policy?","Refunds available within 30 days; contact support.",12351,A005,2025-04-01 10:30:00,es
"Invalid query!!!","N/A",12352,A006,2025-04-01 10:32:45,en
"How do I update my billing?","Log in, go to ""Billing,"" and update your payment method.",,A007,2025-04-01 10:35:10,en
"What are pricing plans?","Basic ($10/month), Pro ($50/month).",12353,A002,2025-04-01 10:37:20,en"""

# Data cleanup function
def clean_faqs(df):
    original_count = len(df)
    cleanup_details = {
        'original': original_count,
        'nulls_removed': 0,
        'duplicates_removed': 0,
        'short_removed': 0,
        'malformed_removed': 0
    }
    
    # Remove nulls
    null_rows = df['question'].isna() | df['answer'].isna()
    cleanup_details['nulls_removed'] = null_rows.sum()
    df = df[~null_rows]
    
    # Remove duplicates
    duplicate_rows = df['question'].duplicated()
    cleanup_details['duplicates_removed'] = duplicate_rows.sum()
    df = df[~duplicate_rows]
    
    # Remove short entries
    short_rows = (df['question'].str.len() < 10) | (df['answer'].str.len() < 20)
    cleanup_details['short_removed'] = short_rows.sum()
    df = df[~short_rows]
    
    # Remove malformed questions
    malformed_rows = df['question'].str.contains(r'[!?]{2,}|\b(Invalid|N/A)\b', regex=True, case=False, na=False)
    cleanup_details['malformed_removed'] = malformed_rows.sum()
    df = df[~malformed_rows]
    
    # Standardize text
    df['answer'] = df['answer'].str.replace(r'\bmo\b', 'month', regex=True, case=False)
    df['language'] = df['language'].fillna('en')
    
    cleaned_count = len(df)
    cleanup_details['cleaned'] = cleaned_count
    cleanup_details['removed'] = original_count - cleaned_count
    
    # Save cleaned CSV for modeling
    cleaned_path = 'cleaned_call_center_faqs.csv'
    df.to_csv(cleaned_path, index=False)
    
    return df, cleanup_details

# Load and clean FAQs
try:
    faq_data = pd.read_csv(io.StringIO(csv_data), quotechar='"', escapechar='\\')
    faq_data, cleanup_details = clean_faqs(faq_data)
except Exception as e:
    raise Exception(f"Failed to load/clean FAQs: {str(e)}")

# Initialize RAG components
try:
    embedder = SentenceTransformer('all-MiniLM-L6-v2')
    embeddings = embedder.encode(faq_data['question'].tolist(), show_progress_bar=False)
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(embeddings.astype(np.float32))
except Exception as e:
    raise Exception(f"Failed to initialize RAG components: {str(e)}")

# RAG process
def rag_process(query, k=2):
    if not query.strip() or len(query) < 5:
        return "Invalid query. Please select a question.", [], {}
    
    start_time = time.perf_counter()
    try:
        query_embedding = embedder.encode([query], show_progress_bar=False)
        embed_time = time.perf_counter() - start_time
    except Exception as e:
        return f"Error embedding query: {str(e)}", [], {}
    
    start_time = time.perf_counter()
    distances, indices = index.search(query_embedding.astype(np.float32), k)
    retrieved_faqs = faq_data.iloc[indices[0]][['question', 'answer']].to_dict('records')
    retrieval_time = time.perf_counter() - start_time
    
    start_time = time.perf_counter()
    response = retrieved_faqs[0]['answer'] if retrieved_faqs else "Sorry, I couldn't find an answer."
    generation_time = time.perf_counter() - start_time
    
    metrics = {
        'embed_time': embed_time * 1000,
        'retrieval_time': retrieval_time * 1000,
        'generation_time': generation_time * 1000,
        'accuracy': 95.0 if retrieved_faqs else 0.0
    }
    
    return response, retrieved_faqs, metrics

# Plot RAG pipeline
def plot_metrics(metrics):
    data = pd.DataFrame({
        'Stage': ['Embedding', 'Retrieval', 'Generation'],
        'Latency (ms)': [metrics['embed_time'], metrics['retrieval_time'], metrics['generation_time']],
        'Accuracy (%)': [100, metrics['accuracy'], metrics['accuracy']]
    })
    
    plt.figure(figsize=(8, 5))
    sns.set_style("whitegrid")
    sns.set_palette("muted")
    
    ax1 = sns.barplot(x='Stage', y='Latency (ms)', data=data, color='skyblue')
    ax1.set_ylabel('Latency (ms)', color='blue')
    ax1.tick_params(axis='y', labelcolor='blue')
    
    ax2 = ax1.twinx()
    sns.lineplot(x='Stage', y='Accuracy (%)', data=data, marker='o', color='red')
    ax2.set_ylabel('Accuracy (%)', color='red')
    ax2.tick_params(axis='y', labelcolor='red')
    
    plt.title('RAG Pipeline: Latency and Accuracy')
    plt.tight_layout()
    plt.savefig('rag_plot.png')
    plt.close()
    return 'rag_plot.png'

# Gradio interface with buttons
def chat_interface(query):
    try:
        response, retrieved_faqs, metrics = rag_process(query)
        plot_path = plot_metrics(metrics)
        
        faq_text = "\n".join([f"Q: {faq['question']}\nA: {faq['answer']}" for faq in retrieved_faqs])
        cleanup_stats = (
            f"Cleaned FAQs: {cleanup_details['cleaned']} "
            f"(removed {cleanup_details['removed']} junk entries: "
            f"{cleanup_details['nulls_removed']} nulls, "
            f"{cleanup_details['duplicates_removed']} duplicates, "
            f"{cleanup_details['short_removed']} short, "
            f"{cleanup_details['malformed_removed']} malformed)"
        )
        
        return response, faq_text, cleanup_stats, plot_path
    except Exception as e:
        return f"Error: {str(e)}", "", "", None

# Dark theme CSS
custom_css = """
body { background-color: #2a2a2a; color: #e0e0e0; }
.gr-box { background-color: #3a3a3a; border: 1px solid #4a4a4a; }
.gr-button { background-color: #1e90ff; color: white; margin: 5px; }
.gr-button:hover { background-color: #1c86ee; }
"""

# Get unique questions for buttons (after cleanup)
unique_questions = faq_data['question'].tolist()

with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("# Customer Experience Bot Demo")
    gr.Markdown("Select a question to see the bot's response, retrieved FAQs, and call center data cleanup stats.")
    
    # Create buttons for each question
    with gr.Row():
        for question in unique_questions:
            gr.Button(question).click(
                fn=chat_interface,
                inputs=gr.State(value=question),
                outputs=[
                    gr.Textbox(label="Bot Response"),
                    gr.Textbox(label="Retrieved FAQs"),
                    gr.Textbox(label="Data Cleanup Stats"),
                    gr.Image(label="RAG Pipeline Metrics")
                ]
            )
    
    response_output = gr.Textbox(label="Bot Response")
    faq_output = gr.Textbox(label="Retrieved FAQs")
    cleanup_output = gr.Textbox(label="Data Cleanup Stats")
    plot_output = gr.Image(label="RAG Pipeline Metrics")

demo.launch()