INVIDEO_BASIC / app.py
gnosticdev's picture
Update app.py
374c72e verified
raw
history blame
5.8 kB
import os
import re
import requests
import gradio as gr
from moviepy.editor import *
import edge_tts
import tempfile
import logging
from datetime import datetime
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
import nltk
import random
from transformers import pipeline
import torch
import asyncio
import nest_asyncio
from nltk.tokenize import sent_tokenize
# Setup
nltk.download('punkt', quiet=True)
nest_asyncio.apply()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
MODEL_NAME = "DeepESP/gpt2-spanish"
VOICE_NAMES, VOICES = [], []
async def get_voices():
voces = await edge_tts.list_voices()
voice_names = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in voces]
return voice_names, voces
async def get_and_set_voices():
global VOICE_NAMES, VOICES
try:
VOICE_NAMES, VOICES = await get_voices()
if not VOICES:
raise Exception("No se encontraron voces.")
except Exception as e:
logger.warning(f"Fallo al cargar voces: {e}")
VOICE_NAMES = ["Voz Predeterminada (Femenino, es-ES)"]
VOICES = [{'ShortName': 'es-ES-ElviraNeural'}]
asyncio.get_event_loop().run_until_complete(get_and_set_voices())
def generar_guion_profesional(prompt):
try:
generator = pipeline(
"text-generation",
model=MODEL_NAME,
device=0 if torch.cuda.is_available() else -1
)
response = generator(
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. "
"Incluye introducci贸n, desarrollo en 3 secciones y conclusi贸n:",
max_length=1000,
temperature=0.7,
top_k=50,
top_p=0.95,
num_return_sequences=1
)
guion = response[0]['generated_text']
if len(guion.split()) < 100:
raise ValueError("Guion demasiado breve")
return guion
except Exception as e:
logger.error(f"Error generando guion: {e}")
return f"""Introducci贸n sobre {prompt}.
Secci贸n 1: Or铆genes e historia.
Secci贸n 2: Estado actual.
Secci贸n 3: Futuro e impacto.
Conclusi贸n reflexiva."""
def buscar_videos_avanzado(prompt, guion, num_videos=5):
try:
oraciones = sent_tokenize(guion)
vectorizer = TfidfVectorizer(stop_words='spanish')
tfidf = vectorizer.fit_transform(oraciones)
palabras = vectorizer.get_feature_names_out()
scores = np.asarray(tfidf.sum(axis=0)).ravel()
top_indices = np.argsort(scores)[-5:]
palabras_clave = [palabras[i] for i in top_indices]
palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower())
todas = list(set(palabras_clave + palabras_prompt))[:5]
headers = {"Authorization": PEXELS_API_KEY}
response = requests.get(
f"https://api.pexels.com/videos/search?query={'+'.join(todas)}&per_page={num_videos}",
headers=headers,
timeout=15
)
return response.json().get('videos', [])
except Exception as e:
logger.error(f"Error buscando videos: {e}")
return []
async def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
voz_archivo = "voz.mp3"
try:
guion = custom_script if custom_script.strip() else generar_guion_profesional(prompt)
voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural'
# Generar audio
await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo)
audio = AudioFileClip(voz_archivo)
# Obtener videos
videos_data = buscar_videos_avanzado(prompt, guion)
if not videos_data:
raise Exception("No se encontraron videos")
# Procesar videos
clips = []
for video in videos_data[:3]:
video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0])
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
response = requests.get(video_file['link'], stream=True)
for chunk in response.iter_content(chunk_size=1024 * 1024):
temp_video.write(chunk)
clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration']))
clips.append(clip)
# Crear video final
video_final = concatenate_videoclips(clips)
video_final = video_final.set_audio(audio)
output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
video_final.write_videofile(output_path, fps=24, threads=2)
return output_path
except Exception as e:
logger.error(f"Error cr铆tico: {e}")
return None
finally:
if os.path.exists(voz_archivo):
os.remove(voz_archivo)
# Gradio app
with gr.Blocks(title="Generador de Videos") as app:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Tema del video")
custom_script = gr.TextArea(label="Gui贸n personalizado (opcional)")
voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0])
btn = gr.Button("Generar Video", variant="primary")
with gr.Column():
output = gr.Video(label="Resultado", format="mp4")
async def wrapper(p, cs, v):
return await crear_video_profesional(p, cs, VOICE_NAMES.index(v))
btn.click(
fn=wrapper,
inputs=[prompt, custom_script, voz],
outputs=output
)
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860)