File size: 13,202 Bytes
ba72f62
2ae57cb
22b00f2
 
 
2ae57cb
 
308d699
 
1f41a8a
2ae57cb
acc179d
 
 
 
 
 
9039967
 
 
 
 
acc179d
 
44441db
 
2445440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae57cb
44441db
57a37ae
 
 
 
 
 
 
 
22b00f2
2ae57cb
22b00f2
 
 
308d699
1f41a8a
308d699
57a37ae
 
 
 
 
 
 
308d699
 
 
57a37ae
22b00f2
2ae57cb
acc179d
 
22b00f2
44441db
2ae57cb
44441db
 
 
 
 
 
 
 
308d699
27994de
 
44441db
 
562ec01
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae57cb
44441db
22b00f2
2ae57cb
22b00f2
308d699
2ae57cb
308d699
 
 
 
 
44441db
 
 
308d699
44441db
 
8e4e001
44441db
308d699
44441db
 
 
 
 
308d699
44441db
 
 
308d699
44441db
 
 
 
308d699
 
 
 
 
 
 
44441db
 
 
8e4e001
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44441db
308d699
44441db
 
308d699
 
 
 
44441db
 
308d699
 
 
 
 
 
 
 
44441db
308d699
44441db
 
2ae57cb
44441db
 
2ae57cb
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d745
 
22b00f2
eb3d745
2ae57cb
eb3d745
 
44441db
1f41a8a
eb3d745
 
 
 
 
 
 
 
 
 
 
 
1f41a8a
eb3d745
 
308d699
1f41a8a
 
eb3d745
1f41a8a
 
2ae57cb
44441db
22b00f2
2ae57cb
308d699
 
2ae57cb
308d699
 
 
 
 
 
44441db
 
 
 
 
 
 
308d699
 
 
 
 
 
 
44441db
 
562ec01
308d699
 
 
 
 
 
44441db
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae57cb
44441db
2ae57cb
308d699
 
44441db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
import json
import asyncio
import edge_tts
from faster_whisper import WhisperModel
from langchain_groq import ChatGroq
import logging
import tempfile
import shutil
import torch

if torch.cuda.is_available():
    print("πŸ”₯ CUDA Available")
    print(torch.cuda.get_device_name(0))
    print("cuDNN version:", torch.backends.cudnn.version())
else:
    print("❌ CUDA Not Available")
print("πŸ”₯ CUDA:", torch.cuda.is_available())
print("🧠 GPU:", torch.cuda.get_device_name(0))
print("πŸ’‘ cuDNN version:", torch.backends.cudnn.version())
print("πŸ’₯ cuDNN enabled:", torch.backends.cudnn.is_available())



# Initialize models
chat_groq_api = os.getenv("GROQ_API_KEY")

# Attempt to initialize the Groq LLM only if an API key is provided.  When
# running in environments where the key is unavailable (such as local
# development or automated testing), fall back to a simple stub that
# generates generic responses.  This avoids raising an exception at import
# time and allows the rest of the application to run without external
# dependencies.  See the DummyGroq class defined below.
if chat_groq_api:
    try:
        groq_llm = ChatGroq(
            temperature=0.7,
            model_name="llama-3.3-70b-versatile",
            api_key=chat_groq_api
        )
    except Exception as e:
        logging.error(f"Error initializing ChatGroq LLM: {e}. Falling back to dummy model.")
        groq_llm = None
else:
    groq_llm = None

if groq_llm is None:
    class DummyGroq:
        """A fallback language model used when no Groq API key is set.

        The ``invoke`` method of this class returns a simple canned response
        rather than calling an external API.  This ensures that the
        interview functionality still produces a sensible prompt, albeit
        without advanced LLM behaviour.
        """
        def invoke(self, prompt: str):
            # Provide a very generic question based on the prompt.  This
            # implementation ignores the prompt contents entirely; in a more
            # sophisticated fallback you could parse ``prompt`` to tailor
            # responses.
            return "Tell me about yourself and why you're interested in this position."

    groq_llm = DummyGroq()

# Initialize Whisper model
#
# Loading the Whisper model can take several seconds on first use because the
# model weights must be downloaded from Hugging Face. This delay can cause
# the API call to ``/api/transcribe_audio`` to appear stuck while the model
# downloads. To mitigate this, we allow the model size to be configured via
# the ``WHISPER_MODEL_NAME`` environment variable and preload the model when
# this module is imported. Using a smaller model (e.g. "tiny" or "base.en")
# reduces download size and inference time considerably.
whisper_model = None

def load_whisper_model():
    global whisper_model
    if whisper_model is None:
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            compute_type = "float16" if device == "cuda" else "int8"
            # Allow overriding the model size via environment. Default to a
            # lightweight model to improve startup times. Available options
            # include: tiny, base, base.en, small, medium, large. See
            # https://huggingface.co/ggerganov/whisper.cpp for details.
            model_name = os.getenv("WHISPER_MODEL_NAME", "tiny")
            whisper_model = WhisperModel(model_name, device=device, compute_type=compute_type)
            logging.info(f"Whisper model '{model_name}' loaded on {device} with {compute_type}")
        except Exception as e:
            logging.error(f"Error loading Whisper model: {e}")
            # Fallback to CPU
            whisper_model = WhisperModel(model_name if 'model_name' in locals() else "tiny", device="cpu", compute_type="int8")
    return whisper_model

load_whisper_model()

def generate_first_question(profile, job):
    """Generate the first interview question based on profile and job"""
    try:
        prompt = f"""
        You are conducting an interview for a {job.role} position at {job.company}.
        The candidate's profile shows:
        - Skills: {profile.get('skills', [])}
        - Experience: {profile.get('experience', [])}
        - Education: {profile.get('education', [])}
        
        Generate an appropriate opening interview question that is professional and relevant.
        Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
        If the interview is for a technical role, focus on technical skills. Make the question related
        to the job role and the candidate's background and the previous question.
        """
        
        response = groq_llm.invoke(prompt)
        
        # Fix: Handle AIMessage object properly
        if hasattr(response, 'content'):
            question = response.content.strip()
        elif isinstance(response, str):
            question = response.strip()
        else:
            question = str(response).strip()
            
        # Ensure we have a valid question
        if not question or len(question) < 10:
            question = "Tell me about yourself and why you're interested in this position."
            
        logging.info(f"Generated question: {question}")
        return question
        
    except Exception as e:
        logging.error(f"Error generating first question: {e}")
        return "Tell me about yourself and why you're interested in this position."

def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
    """Synchronous wrapper for edge-tts with better error handling"""
    try:
        # Ensure text is not empty
        if not text or not text.strip():
            logging.error("Empty text provided for TTS")
            return None
            
        # Ensure the directory exists and is writable
        directory = os.path.dirname(output_path)
        if not directory:
            directory = "/tmp/audio"
            output_path = os.path.join(directory, os.path.basename(output_path))
        
        os.makedirs(directory, exist_ok=True)
        
        # Test write permissions with a temporary file
        test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
        try:
            with open(test_file, 'w') as f:
                f.write("test")
            os.remove(test_file)
            logging.info(f"Directory {directory} is writable")
        except (PermissionError, OSError) as e:
            logging.error(f"Directory {directory} is not writable: {e}")
            # Fallback to /tmp
            directory = "/tmp/audio"
            output_path = os.path.join(directory, os.path.basename(output_path))
            os.makedirs(directory, exist_ok=True)
        
        async def generate_audio():
            try:
                communicate = edge_tts.Communicate(text, voice)
                await communicate.save(output_path)
                logging.info(f"TTS audio saved to: {output_path}")
            except Exception as e:
                logging.error(f"Error in async TTS generation: {e}")
                raise
        
        # Run async function in sync context
        try:
            loop = asyncio.get_event_loop()
            if loop.is_running():
                # If loop is already running, create a new one in a thread
                import threading
                import concurrent.futures
                
                def run_in_thread():
                    new_loop = asyncio.new_event_loop()
                    asyncio.set_event_loop(new_loop)
                    try:
                        new_loop.run_until_complete(generate_audio())
                    finally:
                        new_loop.close()
                
                with concurrent.futures.ThreadPoolExecutor() as executor:
                    future = executor.submit(run_in_thread)
                    future.result(timeout=30)  # 30 second timeout
            else:
                loop.run_until_complete(generate_audio())
        except RuntimeError:
            # No event loop exists
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
            try:
                loop.run_until_complete(generate_audio())
            finally:
                loop.close()
        
        # Verify file was created and has content
        if os.path.exists(output_path):
            file_size = os.path.getsize(output_path)
            if file_size > 1000:  # At least 1KB for a valid audio file
                logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
                return output_path
            else:
                logging.error(f"TTS file is too small: {output_path} ({file_size} bytes)")
                return None
        else:
            logging.error(f"TTS file was not created: {output_path}")
            return None
            
    except Exception as e:
        logging.error(f"Error in TTS generation: {e}")
        return None

def convert_webm_to_wav(webm_path, wav_path):
    """Convert WebM audio to WAV using ffmpeg if available"""
    try:
        import subprocess
        result = subprocess.run([
            'ffmpeg', '-i', webm_path, '-ar', '16000', '-ac', '1', '-y', wav_path
        ], capture_output=True, text=True, timeout=30)
        
        if result.returncode == 0 and os.path.exists(wav_path) and os.path.getsize(wav_path) > 0:
            logging.info(f"Successfully converted {webm_path} to {wav_path}")
            return wav_path
        else:
            logging.error(f"FFmpeg conversion failed: {result.stderr}")
            return None
    except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
        logging.error(f"Error converting audio: {e}")
        return None

import subprocess  # top of the file if not already imported

def whisper_stt(audio_path):
    """Speech-to-text using Faster-Whisper"""
    try:
        if not os.path.exists(audio_path) or os.path.getsize(audio_path) == 0:
            logging.error(f"Audio file is empty or missing: {audio_path}")
            return ""

        # Convert webm to wav using ffmpeg
        wav_path = audio_path.replace(".webm", ".wav")
        cmd = [
            "ffmpeg",
            "-y",  # overwrite
            "-i", audio_path,
            "-ar", "16000",
            "-ac", "1",
            "-f", "wav",
            wav_path
        ]
        subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

        if not os.path.exists(wav_path) or os.path.getsize(wav_path) == 0:
            logging.error(f"FFmpeg conversion failed or produced empty file: {wav_path}")
            return ""

        model = load_whisper_model()
        segments, _ = model.transcribe(wav_path)
        transcript = " ".join(segment.text for segment in segments)
        return transcript.strip()
    except Exception as e:
        logging.error(f"Error in STT: {e}")
        return ""

def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
    """Evaluate candidate's answer with better error handling"""
    try:
        if not answer or not answer.strip():
            return {
                "score": "Poor",
                "feedback": "No answer provided."
            }
            
        prompt = f"""
        You are evaluating a candidate's answer for a {seniority} {job_role} position.
        
        Question: {question}
        Candidate Answer: {answer}
        
        Evaluate based on technical correctness, clarity, and relevance.
        Provide a brief evaluation in 1-2 sentences.
        
        Rate the answer as one of: Poor, Medium, Good, Excellent
        
        Respond in this exact format:
        Score: [Poor/Medium/Good/Excellent]
        Feedback: [Your brief feedback here]
        """
        
        response = groq_llm.invoke(prompt)
        
        # Handle AIMessage object properly
        if hasattr(response, 'content'):
            response_text = response.content.strip()
        elif isinstance(response, str):
            response_text = response.strip()
        else:
            response_text = str(response).strip()
        
        # Parse the response
        lines = response_text.split('\n')
        score = "Medium"  # default
        feedback = "Good answer, but could be more detailed."  # default
        
        for line in lines:
            line = line.strip()
            if line.startswith('Score:'):
                score = line.replace('Score:', '').strip()
            elif line.startswith('Feedback:'):
                feedback = line.replace('Feedback:', '').strip()
        
        # Ensure score is valid
        valid_scores = ["Poor", "Medium", "Good", "Excellent"]
        if score not in valid_scores:
            score = "Medium"
        
        return {
            "score": score,
            "feedback": feedback
        }
        
    except Exception as e:
        logging.error(f"Error evaluating answer: {e}")
        return {
            "score": "Medium",
            "feedback": "Unable to evaluate answer at this time."
        }