Spaces:
Paused
Paused
File size: 13,202 Bytes
ba72f62 2ae57cb 22b00f2 2ae57cb 308d699 1f41a8a 2ae57cb acc179d 9039967 acc179d 44441db 2445440 2ae57cb 44441db 57a37ae 22b00f2 2ae57cb 22b00f2 308d699 1f41a8a 308d699 57a37ae 308d699 57a37ae 22b00f2 2ae57cb acc179d 22b00f2 44441db 2ae57cb 44441db 308d699 27994de 44441db 562ec01 308d699 2ae57cb 44441db 22b00f2 2ae57cb 22b00f2 308d699 2ae57cb 308d699 44441db 308d699 44441db 8e4e001 44441db 308d699 44441db 308d699 44441db 308d699 44441db 308d699 44441db 8e4e001 308d699 44441db 308d699 44441db 308d699 44441db 308d699 44441db 308d699 44441db 2ae57cb 44441db 2ae57cb 308d699 eb3d745 22b00f2 eb3d745 2ae57cb eb3d745 44441db 1f41a8a eb3d745 1f41a8a eb3d745 308d699 1f41a8a eb3d745 1f41a8a 2ae57cb 44441db 22b00f2 2ae57cb 308d699 2ae57cb 308d699 44441db 308d699 44441db 562ec01 308d699 44441db 308d699 2ae57cb 44441db 2ae57cb 308d699 44441db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import json
import asyncio
import edge_tts
from faster_whisper import WhisperModel
from langchain_groq import ChatGroq
import logging
import tempfile
import shutil
import torch
if torch.cuda.is_available():
print("π₯ CUDA Available")
print(torch.cuda.get_device_name(0))
print("cuDNN version:", torch.backends.cudnn.version())
else:
print("β CUDA Not Available")
print("π₯ CUDA:", torch.cuda.is_available())
print("π§ GPU:", torch.cuda.get_device_name(0))
print("π‘ cuDNN version:", torch.backends.cudnn.version())
print("π₯ cuDNN enabled:", torch.backends.cudnn.is_available())
# Initialize models
chat_groq_api = os.getenv("GROQ_API_KEY")
# Attempt to initialize the Groq LLM only if an API key is provided. When
# running in environments where the key is unavailable (such as local
# development or automated testing), fall back to a simple stub that
# generates generic responses. This avoids raising an exception at import
# time and allows the rest of the application to run without external
# dependencies. See the DummyGroq class defined below.
if chat_groq_api:
try:
groq_llm = ChatGroq(
temperature=0.7,
model_name="llama-3.3-70b-versatile",
api_key=chat_groq_api
)
except Exception as e:
logging.error(f"Error initializing ChatGroq LLM: {e}. Falling back to dummy model.")
groq_llm = None
else:
groq_llm = None
if groq_llm is None:
class DummyGroq:
"""A fallback language model used when no Groq API key is set.
The ``invoke`` method of this class returns a simple canned response
rather than calling an external API. This ensures that the
interview functionality still produces a sensible prompt, albeit
without advanced LLM behaviour.
"""
def invoke(self, prompt: str):
# Provide a very generic question based on the prompt. This
# implementation ignores the prompt contents entirely; in a more
# sophisticated fallback you could parse ``prompt`` to tailor
# responses.
return "Tell me about yourself and why you're interested in this position."
groq_llm = DummyGroq()
# Initialize Whisper model
#
# Loading the Whisper model can take several seconds on first use because the
# model weights must be downloaded from Hugging Face. This delay can cause
# the API call to ``/api/transcribe_audio`` to appear stuck while the model
# downloads. To mitigate this, we allow the model size to be configured via
# the ``WHISPER_MODEL_NAME`` environment variable and preload the model when
# this module is imported. Using a smaller model (e.g. "tiny" or "base.en")
# reduces download size and inference time considerably.
whisper_model = None
def load_whisper_model():
global whisper_model
if whisper_model is None:
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if device == "cuda" else "int8"
# Allow overriding the model size via environment. Default to a
# lightweight model to improve startup times. Available options
# include: tiny, base, base.en, small, medium, large. See
# https://huggingface.co/ggerganov/whisper.cpp for details.
model_name = os.getenv("WHISPER_MODEL_NAME", "tiny")
whisper_model = WhisperModel(model_name, device=device, compute_type=compute_type)
logging.info(f"Whisper model '{model_name}' loaded on {device} with {compute_type}")
except Exception as e:
logging.error(f"Error loading Whisper model: {e}")
# Fallback to CPU
whisper_model = WhisperModel(model_name if 'model_name' in locals() else "tiny", device="cpu", compute_type="int8")
return whisper_model
load_whisper_model()
def generate_first_question(profile, job):
"""Generate the first interview question based on profile and job"""
try:
prompt = f"""
You are conducting an interview for a {job.role} position at {job.company}.
The candidate's profile shows:
- Skills: {profile.get('skills', [])}
- Experience: {profile.get('experience', [])}
- Education: {profile.get('education', [])}
Generate an appropriate opening interview question that is professional and relevant.
Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
If the interview is for a technical role, focus on technical skills. Make the question related
to the job role and the candidate's background and the previous question.
"""
response = groq_llm.invoke(prompt)
# Fix: Handle AIMessage object properly
if hasattr(response, 'content'):
question = response.content.strip()
elif isinstance(response, str):
question = response.strip()
else:
question = str(response).strip()
# Ensure we have a valid question
if not question or len(question) < 10:
question = "Tell me about yourself and why you're interested in this position."
logging.info(f"Generated question: {question}")
return question
except Exception as e:
logging.error(f"Error generating first question: {e}")
return "Tell me about yourself and why you're interested in this position."
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
"""Synchronous wrapper for edge-tts with better error handling"""
try:
# Ensure text is not empty
if not text or not text.strip():
logging.error("Empty text provided for TTS")
return None
# Ensure the directory exists and is writable
directory = os.path.dirname(output_path)
if not directory:
directory = "/tmp/audio"
output_path = os.path.join(directory, os.path.basename(output_path))
os.makedirs(directory, exist_ok=True)
# Test write permissions with a temporary file
test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
try:
with open(test_file, 'w') as f:
f.write("test")
os.remove(test_file)
logging.info(f"Directory {directory} is writable")
except (PermissionError, OSError) as e:
logging.error(f"Directory {directory} is not writable: {e}")
# Fallback to /tmp
directory = "/tmp/audio"
output_path = os.path.join(directory, os.path.basename(output_path))
os.makedirs(directory, exist_ok=True)
async def generate_audio():
try:
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_path)
logging.info(f"TTS audio saved to: {output_path}")
except Exception as e:
logging.error(f"Error in async TTS generation: {e}")
raise
# Run async function in sync context
try:
loop = asyncio.get_event_loop()
if loop.is_running():
# If loop is already running, create a new one in a thread
import threading
import concurrent.futures
def run_in_thread():
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
try:
new_loop.run_until_complete(generate_audio())
finally:
new_loop.close()
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_thread)
future.result(timeout=30) # 30 second timeout
else:
loop.run_until_complete(generate_audio())
except RuntimeError:
# No event loop exists
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
loop.run_until_complete(generate_audio())
finally:
loop.close()
# Verify file was created and has content
if os.path.exists(output_path):
file_size = os.path.getsize(output_path)
if file_size > 1000: # At least 1KB for a valid audio file
logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
return output_path
else:
logging.error(f"TTS file is too small: {output_path} ({file_size} bytes)")
return None
else:
logging.error(f"TTS file was not created: {output_path}")
return None
except Exception as e:
logging.error(f"Error in TTS generation: {e}")
return None
def convert_webm_to_wav(webm_path, wav_path):
"""Convert WebM audio to WAV using ffmpeg if available"""
try:
import subprocess
result = subprocess.run([
'ffmpeg', '-i', webm_path, '-ar', '16000', '-ac', '1', '-y', wav_path
], capture_output=True, text=True, timeout=30)
if result.returncode == 0 and os.path.exists(wav_path) and os.path.getsize(wav_path) > 0:
logging.info(f"Successfully converted {webm_path} to {wav_path}")
return wav_path
else:
logging.error(f"FFmpeg conversion failed: {result.stderr}")
return None
except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
logging.error(f"Error converting audio: {e}")
return None
import subprocess # top of the file if not already imported
def whisper_stt(audio_path):
"""Speech-to-text using Faster-Whisper"""
try:
if not os.path.exists(audio_path) or os.path.getsize(audio_path) == 0:
logging.error(f"Audio file is empty or missing: {audio_path}")
return ""
# Convert webm to wav using ffmpeg
wav_path = audio_path.replace(".webm", ".wav")
cmd = [
"ffmpeg",
"-y", # overwrite
"-i", audio_path,
"-ar", "16000",
"-ac", "1",
"-f", "wav",
wav_path
]
subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
if not os.path.exists(wav_path) or os.path.getsize(wav_path) == 0:
logging.error(f"FFmpeg conversion failed or produced empty file: {wav_path}")
return ""
model = load_whisper_model()
segments, _ = model.transcribe(wav_path)
transcript = " ".join(segment.text for segment in segments)
return transcript.strip()
except Exception as e:
logging.error(f"Error in STT: {e}")
return ""
def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
"""Evaluate candidate's answer with better error handling"""
try:
if not answer or not answer.strip():
return {
"score": "Poor",
"feedback": "No answer provided."
}
prompt = f"""
You are evaluating a candidate's answer for a {seniority} {job_role} position.
Question: {question}
Candidate Answer: {answer}
Evaluate based on technical correctness, clarity, and relevance.
Provide a brief evaluation in 1-2 sentences.
Rate the answer as one of: Poor, Medium, Good, Excellent
Respond in this exact format:
Score: [Poor/Medium/Good/Excellent]
Feedback: [Your brief feedback here]
"""
response = groq_llm.invoke(prompt)
# Handle AIMessage object properly
if hasattr(response, 'content'):
response_text = response.content.strip()
elif isinstance(response, str):
response_text = response.strip()
else:
response_text = str(response).strip()
# Parse the response
lines = response_text.split('\n')
score = "Medium" # default
feedback = "Good answer, but could be more detailed." # default
for line in lines:
line = line.strip()
if line.startswith('Score:'):
score = line.replace('Score:', '').strip()
elif line.startswith('Feedback:'):
feedback = line.replace('Feedback:', '').strip()
# Ensure score is valid
valid_scores = ["Poor", "Medium", "Good", "Excellent"]
if score not in valid_scores:
score = "Medium"
return {
"score": score,
"feedback": feedback
}
except Exception as e:
logging.error(f"Error evaluating answer: {e}")
return {
"score": "Medium",
"feedback": "Unable to evaluate answer at this time."
} |