File size: 11,262 Bytes
471f933
33fa314
45f0a42
 
33fa314
 
288175b
45f0a42
 
 
288175b
45f0a42
 
 
 
 
 
288175b
45f0a42
 
 
 
 
 
 
 
288175b
 
 
 
45f0a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471f933
288175b
45f0a42
288175b
 
b8deff5
288175b
 
b8deff5
288175b
 
45f0a42
6248af7
45f0a42
 
 
 
 
 
 
6248af7
45f0a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6248af7
45f0a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6248af7
45f0a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6248af7
45f0a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b336194
45f0a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288175b
45f0a42
 
 
 
288175b
45f0a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import re
from pathlib import Path
from typing import Dict, List, Tuple
import spacy
from pdfminer.high_level import extract_text as pdf_extract_text
from docx import Document
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import nltk
from nltk.corpus import stopwords
from dateutil.parser import parse as date_parse

# Download required NLTK data
try:
    nltk.download('stopwords', quiet=True)
    nltk.download('punkt', quiet=True)
except:
    pass

# Load spaCy model for better NER
try:
    nlp = spacy.load("en_core_web_sm")
except:
    print("Please install spacy model: python -m spacy download en_core_web_sm")
    nlp = None

MODEL_NAME = "manishiitg/resume-ner"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")

# Expanded keyword lists
SKILL_KEYWORDS = {
    # Programming Languages
    "python", "java", "javascript", "typescript", "c++", "c#", "ruby", "go", "rust", "kotlin", "swift", 
    "php", "r", "matlab", "scala", "perl", "bash", "powershell", "sql", "html", "css",
    
    # Frameworks & Libraries
    "react", "angular", "vue", "node.js", "express", "django", "flask", "spring", "spring boot", 
    ".net", "laravel", "rails", "fastapi", "pytorch", "tensorflow", "keras", "scikit-learn",
    
    # Databases
    "mysql", "postgresql", "mongodb", "redis", "elasticsearch", "cassandra", "oracle", "sql server",
    
    # Cloud & DevOps
    "aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "terraform", "ansible", "ci/cd",
    
    # Other Technical Skills
    "machine learning", "deep learning", "data science", "nlp", "computer vision", "ai", 
    "rest api", "graphql", "microservices", "agile", "scrum", "git", "linux", "windows"
}

EDUCATION_PATTERNS = [
    # Degrees
    r"\b(bachelor|b\.?s\.?c?\.?|b\.?a\.?|b\.?tech|b\.?e\.?)\b",
    r"\b(master|m\.?s\.?c?\.?|m\.?a\.?|m\.?tech|m\.?e\.?|mba)\b",
    r"\b(ph\.?d\.?|doctorate|doctoral)\b",
    r"\b(diploma|certificate|certification)\b",
    
    # Fields of Study
    r"\b(computer science|software engineering|information technology|it|cs)\b",
    r"\b(electrical engineering|mechanical engineering|civil engineering)\b",
    r"\b(data science|artificial intelligence|machine learning)\b",
    r"\b(business administration|finance|accounting|marketing)\b",
    
    # Institution indicators
    r"\b(university|college|institute|school)\s+of\s+\w+",
    r"\b\w+\s+(university|college|institute)\b"
]

JOB_TITLE_PATTERNS = [
    r"\b(software|senior|junior|lead|principal|staff)\s*(engineer|developer|programmer)\b",
    r"\b(data|business|system|security)\s*(analyst|scientist|engineer)\b",
    r"\b(project|product|program|engineering)\s*manager\b",
    r"\b(devops|cloud|ml|ai|backend|frontend|full[\s-]?stack)\s*(engineer|developer)\b",
    r"\b(consultant|architect|specialist|coordinator|administrator)\b"
]

def extract_text(file_path: str) -> str:
    """Extract text from PDF or DOCX files"""
    path = Path(file_path)
    if path.suffix.lower() == ".pdf":
        text = pdf_extract_text(file_path)
    elif path.suffix.lower() == ".docx":
        doc = Document(file_path)
        text = "\n".join([p.text for p in doc.paragraphs])
    else:
        raise ValueError("Unsupported file format")
    return text

def clean_text(text: str) -> str:
    """Clean and normalize text"""
    # Remove multiple spaces and normalize
    text = re.sub(r'\s+', ' ', text)
    # Keep line breaks for section detection
    text = re.sub(r'\n{3,}', '\n\n', text)
    return text.strip()

def extract_sections(text: str) -> Dict[str, str]:
    """Extract different sections from resume"""
    sections = {
        'education': '',
        'experience': '',
        'skills': '',
        'summary': ''
    }
    
    # Common section headers
    section_patterns = {
        'education': r'(education|academic|qualification|degree)',
        'experience': r'(experience|employment|work\s*history|professional\s*experience|career)',
        'skills': r'(skills|technical\s*skills|competencies|expertise)',
        'summary': r'(summary|objective|profile|about)'
    }
    
    lines = text.split('\n')
    current_section = None
    
    for i, line in enumerate(lines):
        line_lower = line.lower().strip()
        
        # Check if this line is a section header
        for section, pattern in section_patterns.items():
            if re.search(pattern, line_lower) and len(line_lower) < 50:
                current_section = section
                break
        
        # Add content to current section
        if current_section and i > 0:
            sections[current_section] += line + '\n'
    
    return sections

def extract_name(text: str, entities: List) -> str:
    """Extract name using multiple methods"""
    # Method 1: Use transformer model
    name_parts = []
    for ent in entities:
        if ent["entity_group"].upper() in ["NAME", "PERSON", "PER"]:
            name_parts.append(ent["word"].strip())
    
    if name_parts:
        # Clean and join name parts
        full_name = " ".join(dict.fromkeys(name_parts))
        full_name = re.sub(r'\s+', ' ', full_name).strip()
        if len(full_name) > 3 and len(full_name.split()) <= 4:
            return full_name
    
    # Method 2: Use spaCy if available
    if nlp:
        doc = nlp(text[:500])  # Check first 500 chars
        for ent in doc.ents:
            if ent.label_ == "PERSON":
                name = ent.text.strip()
                if len(name) > 3 and len(name.split()) <= 4:
                    return name
    
    # Method 3: Pattern matching for first few lines
    first_lines = text.split('\n')[:5]
    for line in first_lines:
        line = line.strip()
        # Look for name pattern (2-4 words, title case)
        if re.match(r'^[A-Z][a-z]+(\s+[A-Z][a-z]+){1,3}$', line):
            return line
    
    return "Not Found"

def extract_skills(text: str, skill_section: str = "") -> List[str]:
    """Extract skills using multiple methods"""
    skills_found = set()
    
    # Prioritize skills section if available
    search_text = skill_section + " " + text if skill_section else text
    search_text = search_text.lower()
    
    # Method 1: Direct keyword matching
    for skill in SKILL_KEYWORDS:
        if re.search(rf'\b{re.escape(skill.lower())}\b', search_text):
            skills_found.add(skill)
    
    # Method 2: Pattern-based extraction
    # Look for skills in bullet points or comma-separated lists
    skill_patterns = [
        r'[•·▪▫◦‣⁃]\s*([A-Za-z\s\+\#\.]+)',  # Bullet points
        r'(?:skills?|technologies|tools?)[\s:]*([A-Za-z\s,\+\#\.]+)',  # After keywords
    ]
    
    for pattern in skill_patterns:
        matches = re.findall(pattern, search_text, re.IGNORECASE)
        for match in matches:
            # Check each word/phrase in the match
            potential_skills = re.split(r'[,;]', match)
            for ps in potential_skills:
                ps = ps.strip().lower()
                if ps in SKILL_KEYWORDS:
                    skills_found.add(ps)
    
    return list(skills_found)

def extract_education(text: str, edu_section: str = "") -> List[str]:
    """Extract education information"""
    education_info = []
    
    search_text = edu_section + " " + text if edu_section else text
    
    # Extract degrees
    for pattern in EDUCATION_PATTERNS:
        matches = re.findall(pattern, search_text, re.IGNORECASE)
        for match in matches:
            if isinstance(match, tuple):
                match = match[0]
            education_info.append(match)
    
    # Extract years (graduation years)
    year_pattern = r'\b(19[0-9]{2}|20[0-9]{2})\b'
    years = re.findall(year_pattern, search_text)
    
    # Extract GPA if mentioned
    gpa_pattern = r'(?:gpa|cgpa|grade)[\s:]*([0-9]\.[0-9]+)'
    gpa_matches = re.findall(gpa_pattern, search_text, re.IGNORECASE)
    
    return list(dict.fromkeys(education_info))  # Remove duplicates

def extract_experience(text: str, exp_section: str = "") -> List[str]:
    """Extract experience information"""
    experience_info = []
    
    search_text = exp_section + " " + text if exp_section else text
    
    # Extract job titles
    for pattern in JOB_TITLE_PATTERNS:
        matches = re.findall(pattern, search_text, re.IGNORECASE)
        for match in matches:
            if isinstance(match, tuple):
                match = ' '.join(match).strip()
            experience_info.append(match)
    
    # Extract years of experience
    exp_patterns = [
        r'(\d+)\+?\s*(?:years?|yrs?)(?:\s+of)?\s+experience',
        r'experience\s*:?\s*(\d+)\+?\s*(?:years?|yrs?)',
        r'(\d+)\+?\s*(?:years?|yrs?)\s+(?:as|in|of)',
    ]
    
    for pattern in exp_patterns:
        matches = re.findall(pattern, search_text, re.IGNORECASE)
        if matches:
            years = max(map(int, matches))
            experience_info.append(f"{years}+ years experience")
            break
    
    # Extract company names (common patterns)
    company_patterns = [
        r'(?:at|@|company|employer)\s*:?\s*([A-Z][A-Za-z\s&\.\-]+)',
        r'([A-Z][A-Za-z\s&\.\-]+)\s*(?:inc|llc|ltd|corp|company)',
    ]
    
    for pattern in company_patterns:
        matches = re.findall(pattern, search_text)
        experience_info.extend(matches[:3])  # Limit to avoid false positives
    
    return list(dict.fromkeys(experience_info))

def parse_resume(file_path: str, filename: str = None) -> Dict[str, str]:
    """Main function to parse resume"""
    # Extract and clean text
    raw_text = extract_text(file_path)
    text = clean_text(raw_text)
    
    # Extract sections
    sections = extract_sections(text)
    
    # Get NER entities
    entities = ner_pipeline(text[:1024])  # Limit for performance
    
    # Extract information
    name = extract_name(text, entities)
    skills = extract_skills(text, sections.get('skills', ''))
    education = extract_education(text, sections.get('education', ''))
    experience = extract_experience(text, sections.get('experience', ''))
    
    return {
        "name": name,
        "skills": ", ".join(skills[:15]) if skills else "Not Found",  # Limit to 15 skills
        "education": ", ".join(education[:5]) if education else "Not Found",
        "experience": ", ".join(experience[:5]) if experience else "Not Found"
    }

# Optional: Add confidence scores
def parse_resume_with_confidence(file_path: str) -> Dict[str, Tuple[str, float]]:
    """Parse resume with confidence scores for each field"""
    result = parse_resume(file_path)
    
    # Simple confidence calculation based on whether data was found
    confidence_scores = {
        "name": 0.9 if result["name"] != "Not Found" else 0.1,
        "skills": min(0.9, len(result["skills"].split(",")) * 0.1) if result["skills"] != "Not Found" else 0.1,
        "education": 0.8 if result["education"] != "Not Found" else 0.2,
        "experience": 0.8 if result["experience"] != "Not Found" else 0.2
    }
    
    return {
        key: (value, confidence_scores[key]) 
        for key, value in result.items()
    }