trl-sandbox / docs /source /customization.md
ivangabriele's picture
feat: initialize project
2f5127c verified
# Training customization
TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques. Note: Although these examples use the DPOTrainer, the customization applies to most (if not all) trainers.
## Use different optimizers and schedulers
By default, the `DPOTrainer` creates a `torch.optim.AdamW` optimizer. You can create and define a different optimizer and pass it to `DPOTrainer` as follows:
```python
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import optim
from trl import DPOConfig, DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
optimizer = optim.SGD(model.parameters(), lr=training_args.learning_rate)
trainer = DPOTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
optimizers=(optimizer, None),
)
trainer.train()
```
### Add a learning rate scheduler
You can also play with your training by adding learning rate schedulers.
```python
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import optim
from trl import DPOConfig, DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
optimizer = optim.AdamW(model.parameters(), lr=training_args.learning_rate)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
trainer = DPOTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
optimizers=(optimizer, lr_scheduler),
)
trainer.train()
```
## Memory efficient fine-tuning by sharing layers
Another tool you can use for more memory efficient fine-tuning is to share layers between the reference model and the model you want to train.
```python
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import create_reference_model, DPOConfig, DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
ref_model = create_reference_model(model, num_shared_layers=6)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train[:1%]")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
)
trainer.train()
```
## Pass 8-bit reference models
Since `trl` supports all keyword arguments when loading a model from `transformers` using `from_pretrained`, you can also leverage `load_in_8bit` from `transformers` for more memory efficient fine-tuning.
Read more about 8-bit model loading in `transformers` [here](https://huggingface.co/docs/transformers/en/peft#load-in-8bit-or-4bit).
```python
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from trl import DPOConfig, DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
ref_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", quantization_config= quantization_config)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
)
trainer.train()
```
## Use the accelerator cache optimizer
When training large models, you should better handle the accelerator cache by iteratively clearing it. To do so, simply pass `optimize_device_cache=True` to `DPOConfig`:
```python
training_args = DPOConfig(..., optimize_device_cache=True)
```