ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# Full training
python trl/scripts/dpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--dataset_streaming \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--learning_rate 5.0e-7 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--output_dir Qwen2-0.5B-DPO \
--no_remove_unused_columns
--report_to wandb
# LoRA:
python trl/scripts/dpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--dataset_streaming \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--learning_rate 5.0e-6 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--output_dir Qwen2-0.5B-DPO \
--no_remove_unused_columns \
--use_peft \
--lora_r 32 \
--lora_alpha 16
--report_to wandb
"""
import argparse
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
def main(script_args, training_args, model_args):
################
# Model & Tokenizer
###################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
peft_config = get_peft_config(model_args)
if peft_config is None:
ref_model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
else:
ref_model = None
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
if script_args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
################
# Dataset
################
dataset = load_dataset(
script_args.dataset_name,
name=script_args.dataset_config,
streaming=script_args.dataset_streaming,
)
##########
# Training
################
trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=peft_config,
)
trainer.train()
if training_args.eval_strategy != "no":
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
def make_parser(subparsers: argparse._SubParsersAction = None):
dataclass_types = (ScriptArguments, DPOConfig, ModelConfig)
if subparsers is not None:
parser = subparsers.add_parser("dpo", help="Run the DPO training script", dataclass_types=dataclass_types)
else:
parser = TrlParser(dataclass_types)
return parser
if __name__ == "__main__":
parser = make_parser()
script_args, training_args, model_args = parser.parse_args_and_config()
main(script_args, training_args, model_args)