Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
# Full training | |
python trl/scripts/dpo.py \ | |
--dataset_name trl-lib/ultrafeedback_binarized \ | |
--dataset_streaming \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--learning_rate 5.0e-7 \ | |
--num_train_epochs 1 \ | |
--per_device_train_batch_size 2 \ | |
--gradient_accumulation_steps 8 \ | |
--gradient_checkpointing \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 50 \ | |
--output_dir Qwen2-0.5B-DPO \ | |
--no_remove_unused_columns | |
--report_to wandb | |
# LoRA: | |
python trl/scripts/dpo.py \ | |
--dataset_name trl-lib/ultrafeedback_binarized \ | |
--dataset_streaming \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--learning_rate 5.0e-6 \ | |
--num_train_epochs 1 \ | |
--per_device_train_batch_size 2 \ | |
--gradient_accumulation_steps 8 \ | |
--gradient_checkpointing \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 50 \ | |
--output_dir Qwen2-0.5B-DPO \ | |
--no_remove_unused_columns \ | |
--use_peft \ | |
--lora_r 32 \ | |
--lora_alpha 16 | |
--report_to wandb | |
""" | |
import argparse | |
import torch | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from trl import ( | |
DPOConfig, | |
DPOTrainer, | |
ModelConfig, | |
ScriptArguments, | |
TrlParser, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
def main(script_args, training_args, model_args): | |
################ | |
# Model & Tokenizer | |
################### | |
torch_dtype = ( | |
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=torch_dtype, | |
use_cache=False if training_args.gradient_checkpointing else True, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs | |
) | |
peft_config = get_peft_config(model_args) | |
if peft_config is None: | |
ref_model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs | |
) | |
else: | |
ref_model = None | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
if tokenizer.chat_template is None: | |
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
if script_args.ignore_bias_buffers: | |
# torch distributed hack | |
model._ddp_params_and_buffers_to_ignore = [ | |
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool | |
] | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset( | |
script_args.dataset_name, | |
name=script_args.dataset_config, | |
streaming=script_args.dataset_streaming, | |
) | |
########## | |
# Training | |
################ | |
trainer = DPOTrainer( | |
model, | |
ref_model, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=tokenizer, | |
peft_config=peft_config, | |
) | |
trainer.train() | |
if training_args.eval_strategy != "no": | |
metrics = trainer.evaluate() | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
def make_parser(subparsers: argparse._SubParsersAction = None): | |
dataclass_types = (ScriptArguments, DPOConfig, ModelConfig) | |
if subparsers is not None: | |
parser = subparsers.add_parser("dpo", help="Run the DPO training script", dataclass_types=dataclass_types) | |
else: | |
parser = TrlParser(dataclass_types) | |
return parser | |
if __name__ == "__main__": | |
parser = make_parser() | |
script_args, training_args, model_args = parser.parse_args_and_config() | |
main(script_args, training_args, model_args) | |