ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib
import inspect
import logging
import os
import subprocess
import sys
from collections.abc import Iterable
from dataclasses import dataclass, field
from typing import Optional, Union
import yaml
from transformers import HfArgumentParser
from transformers.hf_argparser import DataClass, DataClassType
from transformers.utils import is_rich_available
logger = logging.getLogger(__name__)
@dataclass
class ScriptArguments:
"""
Arguments common to all scripts.
Args:
dataset_name (`str`):
Dataset name.
dataset_config (`str` or `None`, *optional*, defaults to `None`):
Dataset configuration name. Corresponds to the `name` argument of the [`~datasets.load_dataset`] function.
dataset_train_split (`str`, *optional*, defaults to `"train"`):
Dataset split to use for training.
dataset_test_split (`str`, *optional*, defaults to `"test"`):
Dataset split to use for evaluation.
dataset_streaming (`bool`, *optional*, defaults to `False`):
Whether to stream the dataset. If True, the dataset will be loaded in streaming mode.
gradient_checkpointing_use_reentrant (`bool`, *optional*, defaults to `False`):
Whether to apply `use_reentrant` for gradient checkpointing.
ignore_bias_buffers (`bool`, *optional*, defaults to `False`):
Debug argument for distributed training. Fix for DDP issues with LM bias/mask buffers - invalid scalar
type, inplace operation. See https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992.
"""
dataset_name: Optional[str] = field(default=None, metadata={"help": "Dataset name."})
dataset_config: Optional[str] = field(
default=None,
metadata={
"help": "Dataset configuration name. Corresponds to the `name` argument of the `datasets.load_dataset` "
"function."
},
)
dataset_train_split: str = field(default="train", metadata={"help": "Dataset split to use for training."})
dataset_test_split: str = field(default="test", metadata={"help": "Dataset split to use for evaluation."})
dataset_streaming: bool = field(
default=False,
metadata={"help": "Whether to stream the dataset. If True, the dataset will be loaded in streaming mode."},
)
gradient_checkpointing_use_reentrant: bool = field(
default=False,
metadata={"help": "Whether to apply `use_reentrant` for gradient checkpointing."},
)
ignore_bias_buffers: bool = field(
default=False,
metadata={
"help": "Debug argument for distributed training. Fix for DDP issues with LM bias/mask buffers - invalid "
"scalar type, inplace operation. See "
"https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992."
},
)
def init_zero_verbose():
"""
Perform zero verbose init - use this method on top of the CLI modules to make
logging and warning output cleaner. Uses Rich if available, falls back otherwise.
"""
import logging
import warnings
FORMAT = "%(message)s"
if is_rich_available():
from rich.logging import RichHandler
handler = RichHandler()
else:
handler = logging.StreamHandler()
logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[handler], level=logging.ERROR)
# Custom warning handler to redirect warnings to the logging system
def warning_handler(message, category, filename, lineno, file=None, line=None):
logging.warning(f"{filename}:{lineno}: {category.__name__}: {message}")
# Add the custom warning handler - we need to do that before importing anything to make sure the loggers work well
warnings.showwarning = warning_handler
class TrlParser(HfArgumentParser):
"""
A subclass of [`transformers.HfArgumentParser`] designed for parsing command-line arguments with dataclass-backed
configurations, while also supporting configuration file loading and environment variable management.
Args:
dataclass_types (`Union[DataClassType, Iterable[DataClassType]]` or `None`, *optional*, defaults to `None`):
Dataclass types to use for argument parsing.
**kwargs:
Additional keyword arguments passed to the [`transformers.HfArgumentParser`] constructor.
Examples:
```yaml
# config.yaml
env:
VAR1: value1
arg1: 23
```
```python
# main.py
import os
from dataclasses import dataclass
from trl import TrlParser
@dataclass
class MyArguments:
arg1: int
arg2: str = "alpha"
parser = TrlParser(dataclass_types=[MyArguments])
training_args = parser.parse_args_and_config()
print(training_args, os.environ.get("VAR1"))
```
```bash
$ python main.py --config config.yaml
(MyArguments(arg1=23, arg2='alpha'),) value1
$ python main.py --arg1 5 --arg2 beta
(MyArguments(arg1=5, arg2='beta'),) None
```
"""
def __init__(
self,
dataclass_types: Optional[Union[DataClassType, Iterable[DataClassType]]] = None,
**kwargs,
):
# Make sure dataclass_types is an iterable
if dataclass_types is None:
dataclass_types = []
elif not isinstance(dataclass_types, Iterable):
dataclass_types = [dataclass_types]
# Check that none of the dataclasses have the "config" field
for dataclass_type in dataclass_types:
if "config" in dataclass_type.__dataclass_fields__:
raise ValueError(
f"Dataclass {dataclass_type.__name__} has a field named 'config'. This field is reserved for the "
f"config file path and should not be used in the dataclass."
)
super().__init__(dataclass_types=dataclass_types, **kwargs)
def parse_args_and_config(
self,
args: Optional[Iterable[str]] = None,
return_remaining_strings: bool = False,
fail_with_unknown_args: bool = True,
) -> tuple[DataClass, ...]:
"""
Parse command-line args and config file into instances of the specified dataclass types.
This method wraps [`transformers.HfArgumentParser.parse_args_into_dataclasses`] and also parses the config file
specified with the `--config` flag. The config file (in YAML format) provides argument values that replace the
default values in the dataclasses. Command line arguments can override values set by the config file. The
method also sets any environment variables specified in the `env` field of the config file.
"""
args = list(args) if args is not None else sys.argv[1:]
if "--config" in args:
# Get the config file path from
config_index = args.index("--config")
args.pop(config_index) # remove the --config flag
config_path = args.pop(config_index) # get the path to the config file
with open(config_path) as yaml_file:
config = yaml.safe_load(yaml_file)
# Set the environment variables specified in the config file
if "env" in config:
env_vars = config.pop("env", {})
if not isinstance(env_vars, dict):
raise ValueError("`env` field should be a dict in the YAML file.")
for key, value in env_vars.items():
os.environ[key] = str(value)
# Set the defaults from the config values
config_remaining_strings = self.set_defaults_with_config(**config)
else:
config_remaining_strings = []
# Parse the arguments from the command line
output = self.parse_args_into_dataclasses(args=args, return_remaining_strings=return_remaining_strings)
# Merge remaining strings from the config file with the remaining strings from the command line
if return_remaining_strings:
args_remaining_strings = output[-1]
return output[:-1] + (config_remaining_strings + args_remaining_strings,)
elif fail_with_unknown_args and config_remaining_strings:
raise ValueError(
f"Unknown arguments from config file: {config_remaining_strings}. Please remove them, add them to the "
"dataclass, or set `fail_with_unknown_args=False`."
)
else:
return output
def set_defaults_with_config(self, **kwargs) -> list[str]:
"""
Overrides the parser's default values with those provided via keyword arguments, including for subparsers.
Any argument with an updated default will also be marked as not required
if it was previously required.
Returns a list of strings that were not consumed by the parser.
"""
def apply_defaults(parser, kw):
used_keys = set()
for action in parser._actions:
# Handle subparsers recursively
if isinstance(action, argparse._SubParsersAction):
for subparser in action.choices.values():
used_keys.update(apply_defaults(subparser, kw))
elif action.dest in kw:
action.default = kw[action.dest]
action.required = False
used_keys.add(action.dest)
return used_keys
used_keys = apply_defaults(self, kwargs)
# Remaining args not consumed by the parser
remaining = [
item for key, value in kwargs.items() if key not in used_keys for item in (f"--{key}", str(value))
]
return remaining
def get_git_commit_hash(package_name):
try:
# Import the package to locate its path
package = importlib.import_module(package_name)
# Get the path to the package using inspect
package_path = os.path.dirname(inspect.getfile(package))
# Navigate up to the Git repository root if the package is inside a subdirectory
git_repo_path = os.path.abspath(os.path.join(package_path, ".."))
git_dir = os.path.join(git_repo_path, ".git")
if os.path.isdir(git_dir):
# Run the git command to get the current commit hash
commit_hash = (
subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=git_repo_path).strip().decode("utf-8")
)
return commit_hash
else:
return None
except Exception as e:
return f"Error: {str(e)}"