trl-sandbox / trl /trainer /iterative_sft_trainer.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
from pathlib import Path
from typing import Callable, Optional, Union
import torch
from datasets import Dataset
from torch.utils.data import DataLoader
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BaseImageProcessor,
DataCollator,
DataCollatorForLanguageModeling,
DataCollatorForSeq2Seq,
FeatureExtractionMixin,
PreTrainedModel,
PreTrainedTokenizerBase,
ProcessorMixin,
Trainer,
TrainingArguments,
is_wandb_available,
)
from transformers.trainer_utils import EvalLoopOutput
from transformers.utils import is_peft_available
from ..core import PPODecorators
from .iterative_sft_config import IterativeSFTConfig
from .utils import generate_model_card, get_comet_experiment_url
if is_peft_available():
from peft import PeftModel
if is_wandb_available():
import wandb
class IterativeSFTTrainer(Trainer):
"""
The IterativeSFTTrainer can be used to finetune models with methods that requires some steps between optimization.
Args:
model (`Union[str, PreTrainedModel]`):
Model to be trained. Can be either:
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or
a path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is
loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments
in `args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
args ([`IterativeSFTConfig`], *optional*, defaults to `None`):
Configuration for this trainer. If `None`, a default configuration is used.
data_collator (`DataCollator`, *optional*):
Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`.
Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance
of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or
tokenizer.
eval_dataset (`datasets.Dataset`):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
Processing class used to process the data. If `None`, the processing class is loaded from the model's name
with [`~transformers.AutoTokenizer.from_pretrained`].
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
The optimizer and scheduler to use for training.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
The function to use to preprocess the logits before computing the metrics.
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to metric values.
max_length (`int`, *optional*, deprecated):
Maximum length of the tokenized sequence. Use `args.max_length` instead.
truncation_mode (`str`, *optional*, deprecated):
The truncation mode to use. Use `args.truncation_mode` instead.
optimize_device_cache (`bool`, *optional*, deprecated):
Whether to optimize accelerator cache. Use `args.optimize_device_cache` instead.
"""
_tag_names = ["trl", "iterative-sft"]
def __init__(
self,
model: Union[str, PreTrainedModel],
args: Optional[Union[IterativeSFTConfig, TrainingArguments]] = None,
data_collator: Optional[DataCollator] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (
None,
None,
),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None,
# Deprecated parameters
max_length: Optional[int] = None,
truncation_mode: Optional[str] = None,
optimize_device_cache: Optional[bool] = None,
):
# Handle deprecated parameters
deprecated_params = {}
if max_length is not None:
deprecated_params["max_length"] = max_length
warnings.warn(
"The `max_length` parameter is deprecated and will be removed in version 0.20. "
"Pass it through the `args` parameter using `IterativeSFTConfig(max_length=...)` instead.",
DeprecationWarning,
)
if truncation_mode is not None:
deprecated_params["truncation_mode"] = truncation_mode
warnings.warn(
"The `truncation_mode` parameter is deprecated and will be removed in version 0.20. "
"Pass it through the `args` parameter using `IterativeSFTConfig(truncation_mode=...)` instead.",
DeprecationWarning,
)
if optimize_device_cache is not None:
deprecated_params["optimize_device_cache"] = optimize_device_cache
warnings.warn(
"The `optimize_device_cache` parameter is deprecated and will be removed in version 0.20 "
"Pass it through the `args` parameter using `IterativeSFTConfig(optimize_device_cache=...)` instead.",
DeprecationWarning,
)
# Args
model_id = model if isinstance(model, str) else model.config._name_or_path
if args is None:
model_name = model_id.split("/")[-1]
args = IterativeSFTConfig(f"{model_name}-IterativeSFT")
elif isinstance(args, TrainingArguments) and not isinstance(args, IterativeSFTConfig):
dict_args = args.to_dict()
dict_args["hub_token"] = args.hub_token # to_dict hides the hub_token
dict_args.pop("push_to_hub_token")
args = IterativeSFTConfig(**dict_args)
# Update args with deprecated parameters if provided
if deprecated_params:
for key, value in deprecated_params.items():
setattr(args, key, value)
# Handle the tokenizer
if processing_class is None:
processing_class = AutoTokenizer.from_pretrained(model_id)
# Model
if args.model_init_kwargs is not None and not isinstance(model, str):
warnings.warn(
"You passed model_init_kwargs to the `IterativeSFTConfig`, but your model is already instantiated. "
"The `model_init_kwargs` will be ignored."
)
if isinstance(model, str):
model = self._create_model_from_path(model, args)
# PEFT configuration and model wrapping
if is_peft_available() and isinstance(model, PeftModel):
self.is_peft_model = True
else:
self.is_peft_model = False
self.processing_class = processing_class
self.is_encoder_decoder = getattr(model.config, "is_encoder_decoder", False)
if data_collator is None:
if self.is_encoder_decoder:
self.data_collator = DataCollatorForSeq2Seq(
processing_class, label_pad_token_id=-100, pad_to_multiple_of=8
)
else:
self.data_collator = DataCollatorForLanguageModeling(self.processing_class, mlm=False)
else:
self.data_collator = data_collator
self.max_length = args.max_length
self.truncation_mode = args.truncation_mode
self.optimize_device_cache = args.optimize_device_cache
super().__init__(
model=model,
args=args,
data_collator=self.data_collator,
eval_dataset=eval_dataset,
processing_class=processing_class,
compute_metrics=compute_metrics,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
self.create_optimizer_and_scheduler(self.args.max_steps)
# prepare model, optimizer and lr_scheduler
self.model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.lr_scheduler
)
self.processing_class.truncation_side = "left" if self.truncation_mode == "keep_end" else "right"
if not hasattr(self, "accelerator"):
raise AttributeError(
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
)
PPODecorators.optimize_device_cache = self.optimize_device_cache
def _create_model_from_path(self, model_path: str, args: IterativeSFTConfig) -> PreTrainedModel:
"""Creates a model from a path or model identifier."""
model_init_kwargs = args.model_init_kwargs or {}
return AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs)
def prepare_model_inputs(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels: torch.Tensor):
if attention_mask is None:
attention_mask = [torch.ones_like(ids) for ids in input_ids]
if self.is_encoder_decoder:
input_data = self.data_collator(
[
{"input_ids": ids, "attention_mask": att, "labels": lab}
for ids, att, lab in zip(input_ids, attention_mask, labels)
]
).to(self.model.device)
input_data.pop("decoder_input_ids", None) # This is directly computed inside the model
input_data["labels"][input_data["labels"] == self.processing_class.pad_token_id] = -100
else:
input_data = self.data_collator(
[{"input_ids": ids, "attention_mask": att} for ids, att in zip(input_ids, attention_mask)]
).to(self.model.device)
# truncate in case the user has provided input_ids, attention_mask and labels
if self.max_length is not None:
if self.truncation_mode == "keep_start":
input_data = {k: v[: self.max_length] for k, v in input_data.items()}
elif self.truncation_mode == "keep_end":
input_data = {k: v[-self.max_length :] for k, v in input_data.items()}
else:
raise ValueError(f"Unknown truncation mode: {self.truncation_mode}")
return input_data
@staticmethod
def _step_safety_checker(
input_ids: list[torch.LongTensor],
attention_mask: list[torch.LongTensor],
labels: list[torch.LongTensor],
texts: list[str],
texts_labels: list[str],
):
"""
Check if the input data is valid for training.
Args:
input_ids (list[`torch.LongTensor`]):
List of tensors containing the input_ids
attention_mask (list[`torch.LongTensor`]):
List of tensors containing the attention_mask
labels (list[`torch.FloatTensor`]):
List of tensors containing the labels
texts (list[`str`]):
List of string containing the text input.
texts_labels (list[`str`]):
List of string containing the text labels.
Returns:
`tuple`: The input data.
"""
if texts is None:
if attention_mask is None:
for name, tensor_list in zip(["input_ids", "labels"], [input_ids, labels]):
if not isinstance(tensor_list, list):
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
if not isinstance(tensor_list[0], torch.Tensor):
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
else:
for name, tensor_list in zip(
["input_ids", "attention_mask", "labels"], [input_ids, attention_mask, labels]
):
if not isinstance(tensor_list, list):
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
if not isinstance(tensor_list[0], torch.Tensor):
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
else:
if not isinstance(texts, list):
raise ValueError(f"'text' must be a list of strings - got {type(texts)}")
if not isinstance(texts[0], str):
raise ValueError(f"Elements in 'text' must be strings - got {type(texts[0])}")
if texts_labels is not None:
if not isinstance(texts_labels, list):
raise ValueError(f"'text_labels' must be a list of strings - got {type(texts_labels)}")
if not isinstance(texts_labels[0], str):
raise ValueError(f"Elements in 'text_labels' must be strings - got {type(texts_labels[0])}")
return input_ids, attention_mask, labels, texts, texts_labels
@PPODecorators.empty_device_cache()
def step(
self,
input_ids: Optional[list[torch.LongTensor]] = None,
attention_mask: Optional[list[torch.LongTensor]] = None,
labels: Optional[list[torch.LongTensor]] = None,
texts: Optional[list[str]] = None,
texts_labels: Optional[list[str]] = None,
):
"""
Run an optimisation step given a list of input_ids, attention_mask, and labels or a list of text and text_labels.
Args:
input_ids (list[`torch.LongTensor`]):
List of tensors containing the input_ids (if not provided, text will be used)
attention_mask (list[`torch.LongTensor`], , *optional*):
List of tensors containing the attention_mask
labels (list[`torch.FloatTensor`], *optional*):
List of tensors containing the labels (if set to None, will default to input_ids)
texts (list[`str`], *optional*):
List of strings containing the text input (if not provided, input_ids will directly be used)
texts_labels (list[`str`], *optional*):
List of strings containing the text labels (if set to None, will default to text)
Returns:
`dict[str, Any]`: A summary of the training statistics
"""
self.model.train()
if self.state.global_step == 0:
self.tr_loss = torch.tensor(0.0).to(self.args.device)
self._globalstep_last_logged = self.state.global_step
if input_ids is None and texts is None:
raise ValueError("Step should include `input_ids` or `texts` as keyword arguments.")
elif input_ids is not None and texts is not None:
warnings.warn(
"Both `input_ids` and `texts` argument are provided. `input_ids` will be ignored. "
"Please provide only one of the two.",
UserWarning,
)
if labels is None and texts_labels is None and self.is_encoder_decoder:
raise ValueError(
"No 'labels' or 'text_labels' are provided. When using an encoder-decoder architecture, 'labels' or 'text_labels' must be passed."
)
input_ids, attention_mask, labels, texts, texts_labels = self._step_safety_checker(
input_ids, attention_mask, labels, texts, texts_labels
)
if texts is not None:
model_inputs = self.processing_class(
texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt"
)
input_ids, attention_mask = model_inputs["input_ids"], model_inputs["attention_mask"]
if texts_labels is not None:
labels = self.processing_class(
texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt"
)["input_ids"]
if labels is None:
labels = input_ids
model_inputs = self.prepare_model_inputs(input_ids, attention_mask, labels)
model_inputs_names = list(model_inputs.keys())
batch_dict = {}
batch_dict.update(model_inputs)
def collator(data):
return_dict = dict()
for key in data[0]:
if key in ["input_ids", "attention_mask", "labels"]:
return_dict[key] = torch.stack([d[key] for d in data]).to(self.model.device)
return return_dict
batch_data = Dataset.from_dict(batch_dict)
batch_data.set_format("torch")
step_dataloader = DataLoader(
batch_data,
batch_size=self.args.per_device_train_batch_size,
shuffle=True,
collate_fn=collator,
)
for _, batch in enumerate(step_dataloader):
with self.accelerator.accumulate(self.model):
model_inputs = {k: batch[k] for k in model_inputs_names}
loss = self.compute_loss(self.model, model_inputs)
if self.args.n_gpu > 1:
loss = loss.mean()
tr_loss_step = loss.detach()
self.accelerator.backward(loss)
if self.accelerator.sync_gradients and self.args.max_grad_norm is not None:
self.accelerator.clip_grad_norm_(
self.model.parameters(),
self.args.max_grad_norm,
)
self.optimizer.step()
self.optimizer.zero_grad()
if self.lr_scheduler is not None:
self.lr_scheduler.step()
self.state.global_step += 1
# update stats etc
self.tr_loss += tr_loss_step
self._maybe_log_save_evaluate()
def _maybe_log_save_evaluate(self):
# check if eval is required
if self.args.eval_steps is not None:
if self.state.global_step % self.args.eval_steps == 0 and self.state.global_step != 0:
self.evaluate(self.eval_dataset)
# check if logging is required
if self.args.logging_steps is not None:
if self.state.global_step % self.args.logging_steps == 0 and self.state.global_step != 0:
logs: dict[str, float] = {}
tr_loss_scalar = self._nested_gather(self.tr_loss).mean().item()
# reset tr_loss to zero
self.tr_loss -= self.tr_loss
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
logs["learning_rate"] = self._get_learning_rate()
self._globalstep_last_logged = self.state.global_step
self.log(logs)
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="Iterative SFT",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))