File size: 6,849 Bytes
1d6eeba
402772f
1d6eeba
402772f
17495bf
 
402772f
1bda6d9
9b53571
402772f
e6845d8
1bda6d9
1d6eeba
e227091
17495bf
1bda6d9
17495bf
e6845d8
cec851a
e6845d8
cec851a
e6845d8
 
17495bf
 
 
 
 
 
 
 
 
 
 
 
 
310b5ef
1bda6d9
 
 
 
 
 
 
 
 
 
 
 
 
 
9b53571
2ff90cd
1bda6d9
 
9b53571
 
 
2ff90cd
 
 
 
 
 
 
 
 
 
1bda6d9
9b53571
2ff90cd
 
 
 
 
 
 
 
1bda6d9
d06792d
17495bf
9b53571
 
e6845d8
 
9b53571
e6845d8
17495bf
e6845d8
17495bf
 
 
d06792d
 
 
 
17495bf
e6845d8
17495bf
e6845d8
9b53571
e6845d8
17495bf
e6845d8
9b53571
e6845d8
17495bf
9b53571
17495bf
9b53571
17495bf
 
 
 
2e174b1
8ddae8d
e6845d8
1d6eeba
402772f
bec9c56
402772f
 
 
 
4698e24
1d6eeba
e6845d8
1d6eeba
 
4698e24
1d6eeba
4698e24
1d6eeba
 
 
402772f
bec9c56
402772f
 
 
 
4698e24
1d6eeba
e6845d8
1d6eeba
17495bf
 
1d6eeba
e6845d8
17495bf
 
 
d06792d
17495bf
 
 
 
 
 
 
 
 
1d6eeba
e227091
 
8ddae8d
e227091
 
 
 
17495bf
 
 
 
e227091
e6845d8
1bda6d9
e227091
2e174b1
e227091
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import openai
from langdetect import detect
from transformers import pipeline
from keybert import KeyBERT
from fpdf import FPDF
import os
import re
import unicodedata

# --- SETUP ---
openai.api_key = os.getenv("OPENAI_API_KEY")  # Set in HF Space Secrets

summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
kw_model = KeyBERT()
FONT_PATH = "DejaVuSans.ttf"  # Must be uploaded to Space root!

BRANDS = [
    "Apple", "Google", "Microsoft", "Amazon", "Coca-Cola", "Pepsi", "Samsung", "Nike", "ICICI",
    "Meta", "Facebook", "Instagram", "YouTube", "Netflix", "Reliance", "Tata", "Airtel", "Jio",
    "Motilal", "Wipro", "Paytm", "Zomato", "Swiggy", "OLA", "Uber"
]

def extract_brands(text):
    found = [brand for brand in BRANDS if brand.lower() in text.lower()]
    return found if found else ["None detected"]

def extract_topics(text, top_n=5):
    keywords = kw_model.extract_keywords(text, top_n=top_n, stop_words='english')
    topics = [kw for kw, score in keywords]
    return topics if topics else ["None extracted"]

def make_bullets(summary):
    sentences = summary.replace("\n", " ").split('. ')
    bullets = [f"- {s.strip()}" for s in sentences if s.strip()]
    return "\n".join(bullets)

def make_str(val):
    try:
        if val is None:
            return ""
        if isinstance(val, (bool, int, float)):
            return str(val)
        if isinstance(val, list):
            return "\n".join([make_str(v) for v in val])
        if isinstance(val, dict):
            return str(val)
        return str(val)
    except Exception:
        return ""

def very_safe_multicell(pdf, text, w=0, h=8, maxlen=50):
    """Force-break lines so no line/word exceeds maxlen chars, avoiding fpdf2 crash."""
    if not isinstance(text, str):
        text = str(text)
    # Remove unprintable chars (e.g. control characters)
    text = "".join(ch for ch in text if unicodedata.category(ch)[0] != "C")
    # Step 1: break long words
    def break_long_words(t):
        lines = []
        for paragraph in t.split('\n'):
            for word in paragraph.split(' '):
                while len(word) > maxlen:
                    lines.append(word[:maxlen])
                    word = word[maxlen:]
                lines.append(word)
            lines.append('')
        return '\n'.join(lines)
    text = break_long_words(text)
    # Step 2: ensure no line is too long (wrap at maxlen)
    wrapped = []
    for line in text.splitlines():
        while len(line) > maxlen:
            wrapped.append(line[:maxlen])
            line = line[maxlen:]
        wrapped.append(line)
    safe_text = '\n'.join(wrapped)
    pdf.multi_cell(w, h, safe_text)

def create_pdf_report(language, transcript_en, brands, topics, key_takeaways):
    pdf = FPDF()
    pdf.set_auto_page_break(auto=True, margin=10)
    pdf.set_margins(left=10, top=10, right=10)
    pdf.add_font("DejaVu", style="", fname=FONT_PATH, uni=True)
    pdf.add_font("DejaVu", style="B", fname=FONT_PATH, uni=True)
    pdf.add_page()
    pdf.set_font("DejaVu", "B", 16)
    pdf.cell(0, 10, "Audio Transcript & Analysis Report", ln=True, align="C")
    pdf.set_font("DejaVu", size=12)
    pdf.ln(5)
    pdf.cell(0, 10, f"Detected Language: {language}", ln=True)
    pdf.ln(5)
    pdf.set_font("DejaVu", "B", 12)
    pdf.cell(0, 10, "English Transcript:", ln=True)
    pdf.set_font("DejaVu", size=12)
    very_safe_multicell(pdf, transcript_en or "", maxlen=50)
    pdf.ln(3)
    pdf.set_font("DejaVu", "B", 12)
    pdf.cell(0, 10, "Brands Detected:", ln=True)
    pdf.set_font("DejaVu", size=12)
    very_safe_multicell(pdf, ", ".join(brands), maxlen=50)
    pdf.set_font("DejaVu", "B", 12)
    pdf.cell(0, 10, "Key Topics:", ln=True)
    pdf.set_font("DejaVu", size=12)
    very_safe_multicell(pdf, ", ".join(topics), maxlen=50)
    pdf.set_font("DejaVu", "B", 12)
    pdf.cell(0, 10, "Summary (Bulleted):", ln=True)
    pdf.set_font("DejaVu", size=10)
    for takeaway in key_takeaways.split('\n'):
        very_safe_multicell(pdf, takeaway, maxlen=50)
    pdf_file = "/tmp/analysis_report.pdf"
    pdf.output(pdf_file)
    return pdf_file

def process_audio(audio_path):
    if not audio_path or not isinstance(audio_path, str):
        return ("No audio file provided.", "", "", "", "", "", None)
    try:
        with open(audio_path, "rb") as audio_file:
            transcript = openai.audio.transcriptions.create(
                model="whisper-1",
                file=audio_file,
                response_format="text"
            )
        transcript = make_str(transcript).strip()
    except Exception as e:
        return (f"Error in transcription: {e}", "", "", "", "", "", None)
    try:
        detected_lang = detect(transcript)
        lang_text = {'en': 'English', 'hi': 'Hindi', 'ta': 'Tamil'}.get(detected_lang, detected_lang)
    except Exception:
        lang_text = "unknown"
    transcript_en = transcript
    if detected_lang != "en":
        try:
            with open(audio_path, "rb") as audio_file:
                transcript_en = openai.audio.translations.create(
                    model="whisper-1",
                    file=audio_file,
                    response_format="text"
                )
            transcript_en = make_str(transcript_en).strip()
        except Exception as e:
            transcript_en = f"Error translating: {e}"
    try:
        summary_obj = summarizer(transcript_en, max_length=100, min_length=30, do_sample=False)
        summary = summary_obj[0]["summary_text"] if isinstance(summary_obj, list) and "summary_text" in summary_obj[0] else make_str(summary_obj)
    except Exception as e:
        summary = f"Error summarizing: {e}"
    brands = extract_brands(transcript_en)
    topics = extract_topics(transcript_en)
    key_takeaways = make_bullets(summary)
    pdf_file = create_pdf_report(lang_text, transcript_en, brands, topics, key_takeaways)
    return (
        lang_text,
        transcript,
        transcript_en,
        ", ".join(brands),
        ", ".join(topics),
        key_takeaways,
        pdf_file
    )

iface = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(type="filepath", label="Upload MP3/WAV Audio"),
    outputs=[
        gr.Textbox(label="Detected Language"),
        gr.Textbox(label="Original Transcript"),
        gr.Textbox(label="English Transcript (if translated)"),
        gr.Textbox(label="Brands Detected"),
        gr.Textbox(label="Key Topics"),
        gr.Textbox(label="Bulleted Key Takeaways"),
        gr.File(label="Download PDF Report")
    ],
    title="Audio Transcript, Brand & Topic Analysis (OpenAI Whisper + Unicode PDF Download)",
    description="Upload your audio file (MP3/WAV). Get transcript, summary, brand & topic detection, and download PDF. Unicode (Indian language/emoji) supported."
)

iface.launch()