Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from pydub import AudioSegment | |
import os | |
st.title("π§ Atma.ai β Mental Health Session Summarizer") | |
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"]) | |
if uploaded_file: | |
st.audio(uploaded_file) | |
# Save the uploaded file | |
audio_path = "temp_audio.wav" | |
audio = AudioSegment.from_file(uploaded_file) | |
audio = audio.set_channels(1).set_frame_rate(16000) | |
audio.export(audio_path, format="wav") | |
st.write("β Audio converted. Starting transcription...") | |
st.spinner("Transcribing with Whisper...") | |
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small") | |
result = asr(audio_path) | |
transcript = result["text"] | |
st.subheader("Transcript") | |
st.write(transcript) | |
st.subheader("Summary") | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
summary = summarizer(transcript, max_length=200, min_length=40, do_sample=False) | |
st.write(summary[0]["summary_text"]) | |
os.remove(audio_path) # clean up temp file | |