File size: 16,335 Bytes
9914a10
 
e448593
9914a10
e448593
9914a10
d830963
 
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
 
 
 
 
 
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
 
 
 
 
2bd2b96
 
 
 
 
 
9914a10
 
2bd2b96
b958e0e
d830963
e448593
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e448593
2bd2b96
 
9914a10
2bd2b96
 
 
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
 
 
9914a10
 
2bd2b96
 
 
 
9914a10
2bd2b96
 
 
 
9914a10
2bd2b96
9914a10
 
2bd2b96
 
9914a10
2bd2b96
 
 
 
 
 
9914a10
 
 
 
 
2bd2b96
9914a10
2bd2b96
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
e448593
2bd2b96
 
 
9914a10
 
 
2bd2b96
 
 
 
 
 
e448593
9914a10
2bd2b96
9914a10
2bd2b96
d830963
2bd2b96
 
e448593
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d830963
9914a10
 
 
 
 
d830963
2bd2b96
9914a10
 
 
 
 
 
2bd2b96
 
9914a10
 
2bd2b96
9914a10
2bd2b96
 
 
 
9914a10
 
 
 
 
 
 
 
 
 
 
2bd2b96
 
9914a10
 
 
2bd2b96
 
9914a10
 
 
2bd2b96
9914a10
2bd2b96
9914a10
 
2bd2b96
9914a10
 
d830963
 
 
2bd2b96
 
d830963
 
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
 
 
 
 
 
 
d830963
2bd2b96
 
 
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
 
9914a10
 
 
 
 
 
 
2bd2b96
 
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d830963
2bd2b96
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
9914a10
 
2bd2b96
 
 
9914a10
2bd2b96
 
 
 
 
 
 
 
 
 
9914a10
2bd2b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import time

import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
import streamlit_vertical_slider as svs
import torch

from scenarios import bimodal, dirac, gauss

DEMO_INTERVAL = 1.5
NTL_MSE_SCALING = 0.5
MAX_LOSS_PLOT = 15
LAST_STEP = -1

# """TODO:
# - Remove flickering of loss evolution scenario plot (lower ylim?)
# - Move manual part down (predicted token probabilities)
# - Allow to set GT token for each demo
# - Add text token to loss evolution barplot
# - pick good default (4?)
# """


# Define options globally as it's used in initialization and UI
options = [str(i) for i in range(10)] + ["Text"]

# --- Session State Initialization ---
# Ensure all session state variables are initialized before first use, especially by widgets.
if "running_demo" not in st.session_state:
    st.session_state.running_demo = False
if "demo_step" not in st.session_state:
    st.session_state.demo_step = 0
if "last_update_time" not in st.session_state:
    st.session_state.last_update_time = 0
if "loss_container" not in st.session_state:
    st.session_state.loss_container = None
if "previous_chart_html" not in st.session_state:
    st.session_state.previous_chart_html = ""
if "active_scenarios" not in st.session_state:
    # default if you want one to load on first show
    st.session_state.active_scenarios = dirac
if "loss_history" not in st.session_state:
    st.session_state.loss_history = []

# Initialize states for sliders and ground_truth selector
# Using len(options) to correctly size for 0-9 + "Text"
for i in range(len(options)):
    if f"slider_{i}" not in st.session_state:
        st.session_state[f"slider_{i}"] = 1.0 / len(options)
if "ground_truth" not in st.session_state:
    st.session_state["ground_truth"] = options[0]  # Default to "0"


st.title("Number Token Loss - Demo")

st.markdown(
    """
    **Instructions**

    1. **Pick a ground truth token (0–9).**
    2. **Select one of the three automated demos:**
    - **Dirac**: a one-hot (Dirac) distribution whose single 1.0 mass moves from token 0 all the way to “Text.”
    - **Gaussian**: a peaked Gaussian (0.6 mass at center, 0.4 spread) that slides its center from token 0 to “Text.”
    - **Bimodal**: two equal peaks (0.5 each) that start at (0,8) and then move symmetrically away from the GT token.
    """
)

if "ground_truth" not in st.session_state:
    st.session_state["ground_truth"] = "4"
gt = st.selectbox(
    "Ground Truth Token",
    options=options,
    index=options.index(st.session_state["ground_truth"]),
    key="ground_truth",
)


def apply_scenario(step_idx):
    scenario = st.session_state.active_scenarios[step_idx]
    for i, val in enumerate(scenario["values"]):
        st.session_state[f"slider_{i}"] = val


def start_dirac_demo():
    st.session_state.active_scenarios = dirac
    st.session_state.running_demo = True
    st.session_state.demo_step = 0
    st.session_state.last_update_time = time.time()
    apply_scenario(0)


def start_gauss_demo():
    st.session_state.active_scenarios = gauss
    st.session_state.running_demo = True
    st.session_state.demo_step = 0
    st.session_state.last_update_time = time.time()
    apply_scenario(0)


def start_bimodal_demo():
    st.session_state.active_scenarios = bimodal
    st.session_state.running_demo = True
    st.session_state.demo_step = 0
    st.session_state.last_update_time = time.time()
    apply_scenario(0)


def stop_demo():
    st.session_state.running_demo = False


# --- Demo State Advancement Logic ---
# This block handles advancing the demo. If it advances, it updates session state
# and then reruns. This ensures widgets are drawn with the new state in the next run.
if st.session_state.running_demo:
    scenario = st.session_state.active_scenarios
    current_time = time.time()
    if current_time - st.session_state.last_update_time > DEMO_INTERVAL:
        next_step = (st.session_state.demo_step + 1) % len(scenario)
        st.session_state.demo_step = next_step
        apply_scenario(next_step)  # Update session state for the new scenario
        st.session_state.last_update_time = time.time()  # Reset timer
        st.rerun()  # Crucial: Rerun to reflect changes in widgets and charts

# --- UI Rendering ---
# This section renders the main UI. It executes after any potential rerun from the block above.

if st.session_state.running_demo:
    st.info(
        f"Showing scenario {st.session_state.demo_step + 1}"
        f"/{len(st.session_state.active_scenarios)}: "
        f"{st.session_state.active_scenarios[st.session_state.demo_step]['name']}"
    )
    if st.button("Stop Demo"):
        st.session_state.running_demo = False
        st.rerun()
else:
    col1, col2, col3 = st.columns(3)
    with col1:
        if st.button("Run: Dirac"):
            start_dirac_demo()
            st.rerun()
    with col2:
        if st.button("Run: Gauss"):
            start_gauss_demo()
            st.rerun()
    with col3:
        if st.button("Run: Bimodal"):
            start_bimodal_demo()
            st.rerun()


# Placeholder for charts and loss calculations that will be updated
# This section always reads the current st.session_state to generate its content.

current_prob_values_from_state = [
    st.session_state.get(f"slider_{j}", 1.0 / len(options)) for j in range(len(options))
]
total_from_state = sum(current_prob_values_from_state)
probs_for_charts = (
    torch.ones(len(options)) / len(options)
    if total_from_state == 0
    else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
)

gt_choice_for_charts = st.session_state.get("ground_truth", options[0])
if gt_choice_for_charts == "Text":
    gt_index_for_charts = 10  # Assuming "Text" is the 11th item (index 10)
    gt_numeric_for_charts = None
else:
    gt_index_for_charts = int(gt_choice_for_charts)
    gt_numeric_for_charts = gt_index_for_charts

gt = st.session_state["ground_truth"]

st.markdown(f"#### Predicted Probability Distribution — Ground truth token {gt}")
df_dist = pd.DataFrame(
    {"token": options, "probability": probs_for_charts.numpy().round(2)}
)
df_dist["type"] = [
    "Ground Truth" if token == gt_choice_for_charts else "Prediction"
    for token in options
]
bg = (
    alt.Chart(pd.DataFrame({"token": [gt]}))
    .mark_bar(size=40, color="lightgray", opacity=0.4)
    .encode(
        x=alt.X("token:N", sort=options),
        x2=alt.X2("token:N"),  # pin the right edge to the same category
        y=alt.value(0),  # bottom at y=0
        y2=alt.value(1),  # top at y=1 (full height)
    )
)

bars = (
    alt.Chart(df_dist)
    .mark_bar()
    .encode(
        x=alt.X(
            "token:N",
            title="Token",
            sort=options,
            axis=alt.Axis(labelAngle=0, labelFontSize=14, titleFontSize=16),
        ),
        y=alt.Y(
            "probability:Q",
            title="Probability",
            scale=alt.Scale(domain=[0, 1]),
            axis=alt.Axis(format=".2f", labelFontSize=14, titleFontSize=16),
        ),
        color=alt.Color(
            "type:N",
            scale=alt.Scale(
                domain=["Ground Truth", "Prediction"], range=["green", "steelblue"]
            ),
            legend=alt.Legend(title="Token Type", titleFontSize=16, labelFontSize=14),
        ),
        tooltip=[
            alt.Tooltip("token:N", title="Token"),
            alt.Tooltip("probability:Q", title="Probability", format=".2f"),
            alt.Tooltip("type:N", title="Type"),
        ],
    )
    .properties(height=300)
)
annot1 = (
    alt.Chart(pd.DataFrame({"token": [gt]}))
    .mark_text(
        text="⬇ Ground",
        dy=-25,  # 10px above the top of the bar
        dx=25,
        fontSize=14,
        fontWeight="bold",
        color="green",
    )
    .encode(x=alt.X("token:N", sort=options), y=alt.value(1))
)

# second line: “truth=4”
annot2 = (
    alt.Chart(pd.DataFrame({"token": [gt]}))
    .mark_text(
        text=f"truth={gt}",
        dy=-10,  # 25px above the top, so it sits above line 1
        dx=35,
        fontSize=14,
        fontWeight="bold",
        color="green",
    )
    .encode(x=alt.X("token:N", sort=options), y=alt.value(1))
)

# 4) Layer them in order: background, bars, annotation
final_chart = (bg + bars + annot1 + annot2).properties(height=300)

st.altair_chart(final_chart, use_container_width=True)

ce_loss = -torch.log(torch.clamp(probs_for_charts[gt_index_for_charts], min=1e-9))

if gt_numeric_for_charts is None:  # Text token
    ntl_mse_loss = torch.tensor(float("nan"))  # MSE not applicable for text
    ntl_was_loss = torch.tensor(float("nan"))  # WAS not applicable for text
else:  # Numeric token
    numeric_probs_for_loss = probs_for_charts[:10]  # Probabilities for 0-9
    # Ensure numeric_probs_for_loss sums to 1 for NTL calculations if it's a subset
    numeric_probs_sum = torch.sum(numeric_probs_for_loss)
    if numeric_probs_sum > 1e-6:  # Avoid division by zero
        normalized_numeric_probs = numeric_probs_for_loss / numeric_probs_sum
    else:
        normalized_numeric_probs = torch.zeros_like(numeric_probs_for_loss)

    loss_values_tensor = torch.arange(0, 10, dtype=torch.float32)

    # Use normalized probabilities for NTL if only considering numeric tokens
    if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
        pred_value = torch.sum(
            (probs_for_charts[:10] / torch.sum(probs_for_charts[:10]))
            * loss_values_tensor
        )
    elif (
        gt_choice_for_charts != "Text"
    ):  # if sum is zero, pred_value is ill-defined or 0
        pred_value = torch.tensor(0.0)
    else:  # Should not happen if gt_numeric_for_charts is not None
        pred_value = torch.tensor(float("nan"))

    if not torch.isnan(pred_value):
        ntl_mse_loss = ntl_mse_loss = (
            NTL_MSE_SCALING * (pred_value - float(gt_numeric_for_charts)) ** 2
        )
        abs_diff = torch.abs(loss_values_tensor - float(gt_numeric_for_charts))
        if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
            ntl_was_loss = torch.sum(
                (probs_for_charts[:10] / torch.sum(probs_for_charts[:10])) * abs_diff
            )
        elif gt_choice_for_charts != "Text":
            ntl_was_loss = torch.tensor(0.0)
        else:
            ntl_was_loss = torch.tensor(float("nan"))

    else:
        ntl_mse_loss = torch.tensor(float("nan"))
        ntl_was_loss = torch.tensor(float("nan"))


ce_val = round(ce_loss.item(), 3)
mse_val = round(ntl_mse_loss.item(), 3) if not torch.isnan(ntl_mse_loss) else "N/A"
was_val = round(ntl_was_loss.item(), 3) if not torch.isnan(ntl_was_loss) else "N/A"


if len(st.session_state.loss_history) < st.session_state.demo_step + 1:
    st.session_state.loss_history.append(
        {
            "token_index": np.argmax(
                st.session_state.active_scenarios[st.session_state["demo_step"]][
                    "values"
                ]
            ),
            # int(np.argmax(st.session_state['values']))
            # int(),
            "CE": ce_val,
            "NTL-MSE": mse_val if mse_val != "N/A" else None,
            "NTL-WAS": was_val if was_val != "N/A" else None,
        }
    )
    last_step = st.session_state.demo_step

if st.session_state.loss_history:
    loss_plot_data = []
    for entry in st.session_state.loss_history:
        for loss_type in ["CE", "NTL-MSE", "NTL-WAS"]:
            if entry[loss_type] is not None:
                loss_plot_data.append(
                    {
                        "Token Index": entry["token_index"],
                        "Loss Type": loss_type,
                        "Loss Value": entry[loss_type],  # TODO: clip to MAX_LOSS_PLOT?
                    }
                )

    df_loss_plot = pd.DataFrame(loss_plot_data)

loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
if was_val != "N/A":
    loss_data["Loss"].append("NTL-WAS")
    loss_data["Value"].append(was_val)
if mse_val != "N/A":
    loss_data["Loss"].append("NTL-MSE")
    loss_data["Value"].append(mse_val)

loss_df = pd.DataFrame(loss_data)

# ============== Chart Display ==============


st.subheader("Loss Evolution Over Scenarios")

x_domain = list(range(10))

grouped_chart = (
    alt.Chart(df_loss_plot)
    .mark_bar()
    .encode(
        x=alt.X(
            "Token Index:O",
            title="Predicted Token Index",
            axis=alt.Axis(labelAngle=0),
            scale=alt.Scale(domain=x_domain),
        ),
        y=alt.Y(
            "Loss Value:Q", title="Loss", scale=alt.Scale(domain=[0, MAX_LOSS_PLOT])
        ),
        color=alt.Color("Loss Type:N", legend=alt.Legend(title="Loss")),
        xOffset="Loss Type:N",  # <== this causes the grouping instead of stacking
    )
    .properties(height=300)
)

st.altair_chart(grouped_chart, use_container_width=True)


# Create a single chart for loss visualization
st.subheader("Loss Comparison")
st.markdown("""
Adjust the sliders to set a predicted probability for each token (0-9 and "Text"). 
The sliders are vertical and compact. The app normalizes the slider values 
to form a valid probability distribution, visualizes it, and computes the corresponding 
Cross Entropy, NTL-MSE, and NTL-WAS losses.
""")


# Create an Altair chart that will look good and redraw cleanly
chart = (
    alt.Chart(loss_df)
    .mark_bar()
    .encode(
        x=alt.X("Loss:N", sort=loss_df["Loss"].tolist()),
        y=alt.Y(
            "Value:Q",
            scale=alt.Scale(
                domain=[
                    0,
                    max(
                        loss_df["Value"].max() * 1.2,
                        20 if st.session_state.running_demo else 0.5,
                    ),
                ]
            ),
        ),
        color=alt.Color(
            "Loss:N",
            scale=alt.Scale(
                domain=["Cross Entropy", "NTL-WAS", "NTL-MSE"],
                range=["steelblue", "red", "forestgreen"],
            ),
        ),
        tooltip=["Loss", "Value"],
    )
    .properties(height=300)
)

# Sliders and Ground Truth Selector
# These widgets will read their initial values from st.session_state.
# User interactions will update st.session_state directly due to their keys.
if not st.session_state.running_demo:
    st.markdown("#### Predicted Token Probabilities")
    cols = st.columns(len(options))
    for i, col in enumerate(cols):
        label = options[i]  # Use token name directly for label
        with col:
            svs.vertical_slider(
                label=label,
                min_value=0.0,
                max_value=1.0,
                step=0.01,
                height=50,
                key=f"slider_{i}",  # This key links the widget to st.session_state[f"slider_{i}"]
                slider_color="green",
                track_color="lightgray",
                thumb_color="black",
            )


# Add value labels on top of bars
text = chart.mark_text(align="center", baseline="bottom", dy=-5, fontSize=14).encode(
    text=alt.Text("Value:Q", format=".3f")
)

# Combine chart and text
final_chart = chart + text

# Display chart with the full container width
st.altair_chart(final_chart, use_container_width=True)

# --- Polling Rerun for Demo Mode ---
# If the demo is running and we haven't just advanced (which would have caused a rerun),
# then we do a short sleep and rerun to keep the polling loop alive.
if st.session_state.running_demo:
    # This check is implicitly: if we are here and demo is running, it means
    # the time-based advance condition was NOT met in the block at the top.
    time.sleep(0.1)
    st.rerun()

# Add explanation of the demonstration
st.markdown("""
### What Does This Demo Show?

- **Cross Entropy Loss**: Only cares if the prediction is exactly right or wrong - it doesn't consider how "close" a numerical prediction is.
- **Number Token Loss (NTL)**: Considers numerical proximity - predicting "7" when the true value is "8" is better than predicting "2".
""")

# References / resources section with links (common to both modes)
st.markdown("### Resources")
st.markdown("""
- [Paper: Number Token Loss (ArXiv)](https://arxiv.org/abs/2411.02083)
- [GitHub: Number Token Loss](https://github.com/tum-ai/number-token-loss)
""")