Spaces:
Running
Running
import pathlib | |
from typing import Any, Callable, Dict, Iterable, List, Optional, Union | |
import torch | |
from tqdm.auto import tqdm | |
from finetrainers.logging import get_logger | |
from finetrainers.utils import delete_files | |
logger = get_logger() | |
PRECOMPUTED_DATA_DIR = "finetrainers-precomputed-data" | |
def initialize_preprocessor( | |
rank: int, | |
world_size: int, | |
num_items: int, | |
processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]], | |
save_dir: Optional[str] = None, | |
enable_precomputation: bool = False, | |
enable_reuse: bool = False, | |
) -> Union["InMemoryDistributedDataPreprocessor", "PrecomputedDistributedDataPreprocessor"]: | |
if enable_precomputation: | |
return PrecomputedDistributedDataPreprocessor( | |
rank, world_size, num_items, processor_fn, save_dir, enable_reuse | |
) | |
return InMemoryDistributedDataPreprocessor(rank, num_items, processor_fn) | |
class DistributedDataProcessorMixin: | |
def consume(self, *args, **kwargs): | |
raise NotImplementedError("DistributedDataProcessorMixin::consume must be implemented by the subclass.") | |
def consume_once(self, *args, **kwargs): | |
raise NotImplementedError("DistributedDataProcessorMixin::consume_once must be implemented by the subclass.") | |
def requires_data(self): | |
raise NotImplementedError("DistributedDataProcessorMixin::requires_data must be implemented by the subclass.") | |
class InMemoryDistributedDataPreprocessor(DistributedDataProcessorMixin): | |
def __init__( | |
self, rank: int, num_items: int, processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]] | |
) -> None: | |
super().__init__() | |
self._rank = rank | |
self._num_items = num_items | |
self._processor_fn = processor_fn | |
self._cached_samples = [] | |
self._buffer = InMemoryDataBuffer(num_items) | |
self._preprocessed_iterator: Union["InMemoryDataIterable", "InMemoryOnceDataIterable"] = None | |
def consume( | |
self, | |
data_type: str, | |
components: Dict[str, Any], | |
data_iterator, | |
generator: Optional[torch.Generator] = None, | |
cache_samples: bool = False, | |
use_cached_samples: bool = False, | |
drop_samples: bool = False, | |
) -> Iterable[Dict[str, Any]]: | |
if data_type not in self._processor_fn.keys(): | |
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") | |
if cache_samples: | |
if use_cached_samples: | |
raise ValueError("Cannot cache and use cached samples at the same time.") | |
if drop_samples: | |
raise ValueError("Cannot cache and drop samples at the same time.") | |
for i in range(self._num_items): | |
if use_cached_samples: | |
item = self._cached_samples[i] | |
else: | |
item = next(data_iterator) | |
if cache_samples: | |
self._cached_samples.append(item) | |
item = self._processor_fn[data_type](**item, **components, generator=generator) | |
self._buffer.add(data_type, item) | |
if drop_samples: | |
del self._cached_samples | |
self._cached_samples = [] | |
self._preprocessed_iterator = InMemoryDataIterable(self._rank, data_type, self._buffer) | |
return iter(self._preprocessed_iterator) | |
def consume_once( | |
self, | |
data_type: str, | |
components: Dict[str, Any], | |
data_iterator, | |
generator: Optional[torch.Generator] = None, | |
cache_samples: bool = False, | |
use_cached_samples: bool = False, | |
drop_samples: bool = False, | |
) -> Iterable[Dict[str, Any]]: | |
if data_type not in self._processor_fn.keys(): | |
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") | |
if cache_samples: | |
if use_cached_samples: | |
raise ValueError("Cannot cache and use cached samples at the same time.") | |
if drop_samples: | |
raise ValueError("Cannot cache and drop samples at the same time.") | |
for i in range(self._num_items): | |
if use_cached_samples: | |
item = self._cached_samples[i] | |
else: | |
item = next(data_iterator) | |
if cache_samples: | |
self._cached_samples.append(item) | |
item = self._processor_fn[data_type](**item, **components, generator=generator) | |
self._buffer.add(data_type, item) | |
if drop_samples: | |
del self._cached_samples | |
self._cached_samples = [] | |
self._preprocessed_iterator = InMemoryOnceDataIterable(self._rank, data_type, self._buffer) | |
return iter(self._preprocessed_iterator) | |
def requires_data(self): | |
if self._preprocessed_iterator is None: | |
return True | |
return self._preprocessed_iterator.requires_data | |
class PrecomputedDistributedDataPreprocessor(DistributedDataProcessorMixin): | |
def __init__( | |
self, | |
rank: int, | |
world_size: int, | |
num_items: int, | |
processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]], | |
save_dir: str, | |
enable_reuse: bool = False, | |
) -> None: | |
super().__init__() | |
self._rank = rank | |
self._world_size = world_size | |
self._num_items = num_items | |
self._processor_fn = processor_fn | |
self._save_dir = pathlib.Path(save_dir) / PRECOMPUTED_DATA_DIR | |
self._enable_reuse = enable_reuse | |
self._cached_samples = [] | |
self._preprocessed_iterator: Union["PrecomputedDataIterable", "PrecomputedOnceDataIterable"] = None | |
if enable_reuse: | |
if not self._save_dir.exists() or not self._save_dir.is_dir(): | |
raise RuntimeError( | |
f"The directory '{self._save_dir}' does not exist or is not a directory, but is required when enabling reuse of precomputed data." | |
) | |
logger.info(f"Reusing precomputed data from {self._save_dir}.") | |
else: | |
subdirectories = [] if not self._save_dir.exists() else [f for f in self._save_dir.iterdir() if f.is_dir()] | |
if len(subdirectories) > 0: | |
raise RuntimeError( | |
"The current directory contains subdirectories other than the saved precomputed files. Please remove them or enable precomputation reuse." | |
) | |
# NOTE: this should be safe since we are adding `PRECOMPUTED_DATA_DIR` to the path, but be careful since | |
# delete_files can seriously mess up your filesystem if used incorrectly. | |
delete_files([self._save_dir]) | |
self._save_dir.mkdir(parents=True, exist_ok=True) | |
logger.info(f"Cleaned up any existing precomputed data in {self._save_dir} and created a fresh directory.") | |
def consume( | |
self, | |
data_type: str, | |
components: Dict[str, Any], | |
data_iterator, | |
generator: Optional[torch.Generator] = None, | |
cache_samples: bool = False, | |
use_cached_samples: bool = False, | |
drop_samples: bool = False, | |
) -> Iterable[Dict[str, Any]]: | |
if data_type not in self._processor_fn.keys(): | |
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") | |
if cache_samples: | |
if use_cached_samples: | |
raise ValueError("Cannot cache and use cached samples at the same time.") | |
if drop_samples: | |
raise ValueError("Cannot cache and drop samples at the same time.") | |
if not self._enable_reuse: | |
for i in tqdm(range(self._num_items), desc=f"Rank {self._rank}", total=self._num_items): | |
if use_cached_samples: | |
item = self._cached_samples[i] | |
else: | |
item = next(data_iterator) | |
if cache_samples: | |
self._cached_samples.append(item) | |
item = self._processor_fn[data_type](**item, **components, generator=generator) | |
index = self._rank * self._num_items + i | |
_save_item(item, index, self._save_dir, data_type) | |
if drop_samples: | |
del self._cached_samples | |
self._cached_samples = [] | |
if self._enable_reuse: | |
data_iterator = PrecomputedOnceDataIterable(self._rank, self._world_size, self._save_dir, data_type) | |
else: | |
data_iterator = PrecomputedDataIterable(self._rank, self._world_size, self._save_dir, data_type) | |
self._preprocessed_iterator = data_iterator | |
return iter(data_iterator) | |
def consume_once( | |
self, | |
data_type: str, | |
components: Dict[str, Any], | |
data_iterator, | |
generator: Optional[torch.Generator] = None, | |
cache_samples: bool = False, | |
use_cached_samples: bool = False, | |
drop_samples: bool = False, | |
) -> Iterable[Dict[str, Any]]: | |
if data_type not in self._processor_fn.keys(): | |
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") | |
if cache_samples: | |
if use_cached_samples: | |
raise ValueError("Cannot cache and use cached samples at the same time.") | |
if drop_samples: | |
raise ValueError("Cannot cache and drop samples at the same time.") | |
if not self._enable_reuse: | |
for i in tqdm(range(self._num_items), desc=f"Processing data on rank {self._rank}", total=self._num_items): | |
if use_cached_samples: | |
item = self._cached_samples[i] | |
else: | |
item = next(data_iterator) | |
if cache_samples: | |
self._cached_samples.append(item) | |
item = self._processor_fn[data_type](**item, **components, generator=generator) | |
index = self._rank * self._num_items + i | |
_save_item(item, index, self._save_dir, data_type) | |
if drop_samples: | |
del self._cached_samples | |
self._cached_samples = [] | |
self._preprocessed_iterator = PrecomputedOnceDataIterable( | |
self._rank, self._world_size, self._save_dir, data_type | |
) | |
return iter(self._preprocessed_iterator) | |
def requires_data(self): | |
if self._preprocessed_iterator is None: | |
return True | |
return self._preprocessed_iterator.requires_data | |
class InMemoryDataIterable: | |
""" | |
An iterator that loads data items from an in-memory buffer. Once all the data is consumed, | |
`requires_data` is set to True, indicating that the more data is required and the preprocessor's | |
consume method should be called again. | |
""" | |
def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None: | |
self._rank = rank | |
self._data_type = data_type | |
self._buffer = buffer | |
self._requires_data = False | |
def __iter__(self) -> Iterable[Dict[str, Any]]: | |
while (length := self._buffer.get_length(self._data_type)) > 0: | |
if length <= 1: | |
self._requires_data = True | |
yield self._buffer.get(self._data_type) | |
def __len__(self) -> int: | |
return self._buffer.get_length(self._data_type) | |
def requires_data(self): | |
return self._requires_data | |
class InMemoryOnceDataIterable: | |
""" | |
An iterator that loads data items from an in-memory buffer. This iterator will never set | |
`requires_data` to True, as it is assumed that all the data was configured to be preprocessed | |
by the user. The data will indefinitely be cycled from the buffer. | |
""" | |
def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None: | |
self._rank = rank | |
self._data_type = data_type | |
self._buffer = buffer | |
self._requires_data = False | |
def __iter__(self) -> Iterable[Dict[str, Any]]: | |
assert len(self) > 0, "No data available in the buffer." | |
while True: | |
item = self._buffer.get(self._data_type) | |
yield item | |
self._buffer.add(self._data_type, item) | |
def __len__(self) -> int: | |
return self._buffer.get_length(self._data_type) | |
def requires_data(self): | |
return self._requires_data | |
class PrecomputedDataIterable: | |
""" | |
An iterator that loads preconfigured number of data items from disk. Once all the data is | |
loaded, `requires_data` is set to True, indicating that the more data is required and | |
the preprocessor's consume method should be called again. | |
""" | |
def __init__(self, rank: int, world_size: int, save_dir: str, data_type: str) -> None: | |
self._rank = rank | |
self._world_size = world_size | |
self._save_dir = pathlib.Path(save_dir) | |
self._data_type = data_type | |
self._requires_data = False | |
self._num_items = len(list(self._save_dir.glob(f"{data_type}-*.pt"))) | |
def __iter__(self) -> Iterable[Dict[str, Any]]: | |
map_location = torch.device(self._rank) | |
for i in range(self._num_items): | |
if i == self._num_items - 1: | |
self._requires_data = True | |
index = self._rank * self._num_items + i | |
yield _load_item(index, self._save_dir, self._data_type, map_location) | |
def __len__(self) -> int: | |
return self._num_items | |
def requires_data(self): | |
return self._requires_data | |
class PrecomputedOnceDataIterable: | |
""" | |
An infinite iterator that loads preprocessed data from disk. Once initialized, this iterator | |
will never set `requires_data` to True, as it is assumed that all the data was configured to | |
be preprocessed by the user. | |
""" | |
def __init__(self, rank: int, world_size: int, save_dir: str, data_type: str) -> None: | |
self._rank = rank | |
self._world_size = world_size | |
self._save_dir = pathlib.Path(save_dir) | |
self._data_type = data_type | |
self._requires_data = False | |
self._num_items = len(list(self._save_dir.glob(f"{data_type}-*.pt"))) | |
if self._num_items <= self._rank: | |
raise ValueError( | |
f"Precomputed data directory is empty or does not contain enough items (required {self._rank + 1}, found {self._num_items})." | |
) | |
self._num_items_per_rank = max(1, self._num_items // world_size) | |
def __iter__(self) -> Iterable[Dict[str, Any]]: | |
map_location = torch.device(self._rank) | |
i = 0 | |
while True: | |
index = self._rank * self._num_items_per_rank + i | |
yield _load_item(index, self._save_dir, self._data_type, map_location) | |
i = (i + 1) % self._num_items_per_rank | |
def __len__(self) -> int: | |
return self._num_items_per_rank | |
def requires_data(self): | |
return self._requires_data | |
class InMemoryDataBuffer: | |
def __init__(self, max_limit: int = -1) -> None: | |
self.max_limit = max_limit | |
self.buffer: Dict[str, List[str]] = {} | |
def add(self, data_type: str, item: Dict[str, Any]) -> None: | |
if data_type not in self.buffer: | |
self.buffer[data_type] = [] | |
if self.max_limit != -1 and len(self.buffer[data_type]) >= self.max_limit: | |
logger.log_freq( | |
"WARN", | |
"IN_MEMORY_DATA_BUFFER_FULL", | |
"Buffer is full. Dropping the oldest item. This message will be logged every 64th time this happens.", | |
64, | |
) | |
self.buffer[data_type].pop(0) | |
self.buffer[data_type].append(item) | |
def get(self, data_type: str) -> Dict[str, Any]: | |
return self.buffer[data_type].pop(0) | |
def get_length(self, data_type: str) -> int: | |
return len(self.buffer[data_type]) | |
def _save_item(item: Dict[str, Any], index: int, directory: pathlib.Path, data_type: str) -> None: | |
filename = directory / f"{data_type}-{index}.pt" | |
torch.save(item, filename.as_posix()) | |
def _load_item(index: int, directory: pathlib.Path, data_type: str, map_location=None) -> Dict[str, Any]: | |
filename = directory / f"{data_type}-{index}.pt" | |
return torch.load(filename.as_posix(), map_location=map_location, weights_only=True) | |