jev-aleks's picture
scenedino init
9e15541
from dataclasses import dataclass
import os
from random import shuffle
from typing import Any, Dict, List, Tuple
import yaml
from collections import Counter
from pathlib import Path
import cv2
import numpy as np
import torch
from scipy.spatial.transform import Rotation
from scenedino.common.io.images import FisheyeToPinholeSampler
from .base_dataset import BaseDataset
class KITTI360Dataset(BaseDataset):
def __init__(
self,
data_path: Path,
pose_path: Path,
split_path: Path | None,
target_image_size: Tuple[int, int] = (192, 640),
return_stereo: bool = False,
return_fisheye: bool = True,
frame_count: int = 2,
return_depth: bool = False,
return_segmentation: bool = False,
return_occupancy: bool = False,
keyframe_offset: int = 0,
dilation: int = 1,
fisheye_rotation: int = 0,
fisheye_offsets: List[int] = [10],
stereo_offsets: List[int] = [1],
is_preprocessed: bool = False,
) -> None:
super().__init__()
self.data_path = data_path
self.pose_path = pose_path
self.split_path = split_path
self.target_image_size = target_image_size
self.return_stereo = return_stereo
self.return_fisheye = return_fisheye
self.return_depth = return_depth
self.return_occupancy = return_occupancy
self.return_segmentation = return_segmentation
self.frame_count = frame_count
self.dilation = dilation
self.fisheye_offsets = fisheye_offsets
self.stereo_offsets = stereo_offsets
self.keyframe_offset = keyframe_offset
self._is_preprocessed = is_preprocessed
# if isinstance(self.fisheye_rotation, float) or isinstance(
# self.fisheye_rotation, int
# ):
# self.fisheye_rotation = (0, self.fisheye_rotation)
# self.fisheye_rotation = tuple(self.fisheye_rotation)
self._perspective_folder = (
"data_rect"
if not self._is_preprocessed
else f"data_{self.target_image_size[0]}x{self.target_image_size[1]}"
)
self._calibs = self._load_calibs(self.data_path)
self._timestamps, self._sequences = self._load_sequences(
self.data_path, self.pose_path
)
self._datapoints = self._load_split(
self.split_path, self._timestamps, self._sequences
)
self._resampler = FisheyeToPinholeSampler(
self._calibs["K_00"], self.target_image_size
)
self.length = len(self._datapoints)
@dataclass
class Datapoint:
sequence: str
id: int
pose: np.ndarray
is_split: bool
@staticmethod
def _get_sequences(data_path: Path):
all_sequences = []
seqs_path = data_path / "data_2d_raw"
for seq in seqs_path.iterdir():
if not seq.is_dir():
continue
all_sequences.append(seq.name)
return all_sequences
@staticmethod
def _load_calibs(data_path: Path):
calib_folder = data_path / "calibration"
cam_to_pose_file = calib_folder / "calib_cam_to_pose.txt"
cam_to_velo_file = calib_folder / "calib_cam_to_velo.txt"
intrinsics_file = calib_folder / "perspective.txt"
fisheye_02_file = calib_folder / "image_02.yaml"
fisheye_03_file = calib_folder / "image_03.yaml"
cam_to_pose_data = {}
with open(cam_to_pose_file, "r") as f:
for line in f.readlines():
key, value = line.split(":", 1)
try:
cam_to_pose_data[key] = np.array(
[float(x) for x in value.split()], dtype=np.float32
)
except ValueError:
pass
cam_to_velo_data = None
with open(cam_to_velo_file, "r") as f:
line = f.readline()
try:
cam_to_velo_data = np.array(
[float(x) for x in line.split()], dtype=np.float32
)
except ValueError:
pass
intrinsics_data = {}
with open(intrinsics_file, "r") as f:
for line in f.readlines():
key, value = line.split(":", 1)
try:
intrinsics_data[key] = np.array(
[float(x) for x in value.split()], dtype=np.float32
)
except ValueError:
pass
with open(fisheye_02_file, "r") as f:
f.readline() # Skips first line that defines the YAML version
fisheye_02_data = yaml.safe_load(f)
with open(fisheye_03_file, "r") as f:
f.readline() # Skips first line that defines the YAML version
fisheye_03_data = yaml.safe_load(f)
im_size_rect = (
int(intrinsics_data["S_rect_00"][1]),
int(intrinsics_data["S_rect_00"][0]),
)
im_size_fish = (fisheye_02_data["image_height"], fisheye_02_data["image_width"])
# Projection matrices
# We use these projection matrices also when resampling the fisheye cameras.
# This makes downstream processing easier, but it could be done differently.
proj_rect_00 = np.reshape(intrinsics_data["P_rect_00"], (3, 4))
proj_rect_01 = np.reshape(intrinsics_data["P_rect_01"], (3, 4))
# Rotation matrices from raw to rectified -> Needs to be inverted later
rotation_rect_00 = np.eye(4, dtype=np.float32)
rotation_rect_01 = np.eye(4, dtype=np.float32)
rotation_rect_00[:3, :3] = np.reshape(intrinsics_data["R_rect_00"], (3, 3))
rotation_rect_01[:3, :3] = np.reshape(intrinsics_data["R_rect_01"], (3, 3))
# Rotation matrices from resampled fisheye to raw fisheye
# TODO: this is dummy
fisheye_rotation = [0, 0]
fisheye_rotation = np.array(fisheye_rotation).reshape((1, 2))
R_02 = np.eye(4, dtype=np.float32)
R_03 = np.eye(4, dtype=np.float32)
R_02[:3, :3] = (
Rotation.from_euler("xy", fisheye_rotation[:, [1, 0]], degrees=True)
.as_matrix()
.astype(np.float32)
)
R_03[:3, :3] = (
Rotation.from_euler(
"xy", fisheye_rotation[:, [1, 0]] * np.array([[1, -1]]), degrees=True
)
.as_matrix()
.astype(np.float32)
)
# Load cam to pose transforms
T_00_to_pose = np.eye(4, dtype=np.float32)
T_01_to_pose = np.eye(4, dtype=np.float32)
T_02_to_pose = np.eye(4, dtype=np.float32)
T_03_to_pose = np.eye(4, dtype=np.float32)
T_00_to_velo = np.eye(4, dtype=np.float32)
T_00_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_00"], (3, 4))
T_01_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_01"], (3, 4))
T_02_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_02"], (3, 4))
T_03_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_03"], (3, 4))
T_00_to_velo[:3, :] = np.reshape(cam_to_velo_data, (3, 4))
# Compute cam to pose transforms for rectified perspective cameras
T_rect_00_to_pose = T_00_to_pose @ np.linalg.inv(rotation_rect_00)
T_rect_01_to_pose = T_01_to_pose @ np.linalg.inv(rotation_rect_01)
# Compute cam to pose transform for fisheye cameras
T_02_to_pose = T_02_to_pose @ R_02
T_03_to_pose = T_03_to_pose @ R_03
# Compute velo to cameras and velo to pose transforms
T_velo_to_rect_00 = rotation_rect_00 @ np.linalg.inv(T_00_to_velo)
T_velo_to_pose = T_rect_00_to_pose @ T_velo_to_rect_00
T_velo_to_rect_01 = np.linalg.inv(T_rect_01_to_pose) @ T_velo_to_pose
# TODO: possibly normalize image coordinates
calibs = {
"K_00": proj_rect_00[:3, :3],
"K_01": proj_rect_01[:3, :3],
"T_cam_to_pose": {
"00": T_rect_00_to_pose,
"01": T_rect_01_to_pose,
"02": T_02_to_pose,
"03": T_03_to_pose,
},
"T_velo_to_cam": {
"00": T_velo_to_rect_00,
"01": T_velo_to_rect_01,
},
"T_velo_to_pose": T_velo_to_pose,
"fisheye": {
"calib_02": fisheye_02_data,
"calib_03": fisheye_03_data,
"R_02": R_02[:3, :3],
"R_03": R_03[:3, :3],
},
"im_size": im_size_rect,
}
return calibs
def _load_sequences(
self, data_path: Path, pose_path: Path
) -> tuple[dict[str, list[Datapoint]], list[str]]:
sequences = self._get_sequences(data_path)
timestamps = {"pinhole": [], "fisheye": []}
for seq in sequences:
try:
pose_data = np.loadtxt(pose_path / seq / f"poses.txt")
except FileNotFoundError:
print(f"Ground truth poses are not avaialble for sequence {seq}.")
continue
ids_seq = pose_data[:, 0].astype(int)
poses_seq = pose_data[:, 1:].astype(np.float32).reshape((-1, 3, 4))
poses_seq = np.concatenate(
(poses_seq, np.zeros_like(poses_seq[:, :1, :])), axis=1
)
poses_seq[:, 3, 3] = 1
for id, pose in zip(ids_seq, poses_seq):
file_name = f"{id:010d}.png"
datapoint = self.Datapoint(
sequence=seq, id=id, pose=pose, is_split=False
)
timestamps["pinhole"].append(datapoint)
if self.return_fisheye:
datapoint = self.Datapoint(
sequence=seq, id=id, pose=pose, is_split=False
)
timestamps["fisheye"].append(datapoint)
return timestamps, sequences
def _load_split(
self,
split_path: Path,
timestamps: Dict[str, List[Datapoint]],
sequences: List[str],
):
timestamp_idx = {seq: {} for seq in sequences}
for idx, timestamp in enumerate(timestamps["pinhole"]):
timestamp_idx[timestamp.sequence][timestamp.id] = idx
with open(split_path, "r") as f:
lines = f.readlines()
def split_line(line):
segments = line.split(" ")
seq = segments[0]
id = int(segments[1])
return seq, id
whole_split = list(map(split_line, lines))
whole_split.sort()
cut_split = []
for idx, (seq, id) in enumerate(whole_split[: -self.frame_count]):
keep = True
for offset in range(1, self.frame_count):
if whole_split[idx + offset][0] != seq:
keep = False
break
if whole_split[idx + offset][1] != id + offset:
keep = False
break
t_idx = timestamp_idx[seq][id]
timestamps["pinhole"][t_idx].is_split = True
if self.return_fisheye:
timestamps["fisheye"][t_idx].is_split = True
if keep:
cut_split.append((seq, id, timestamp_idx[seq][id]))
return cut_split
@staticmethod
def _load_poses(pose_path: Path, sequences: List[str]):
ids = {}
poses = {}
for seq in sequences:
pose_file = pose_path / seq / f"poses.txt"
try:
pose_data = np.loadtxt(pose_file)
except FileNotFoundError:
print(f"Ground truth poses are not avaialble for sequence {seq}.")
continue
ids_seq = pose_data[:, 0].astype(int)
poses_seq = pose_data[:, 1:].astype(np.float32).reshape((-1, 3, 4))
poses_seq = np.concatenate(
(poses_seq, np.zeros_like(poses_seq[:, :1, :])), axis=1
)
poses_seq[:, 3, 3] = 1
ids[seq] = ids_seq
poses[seq] = poses_seq
return ids, poses
def get_img_id_from_id(self, sequence, id):
return self._img_ids[sequence][id]
def _get_img_indices(self, index) -> Dict[str, List[Path]]:
sequence, id, is_right = self._datapoints[index]
seq_len = self._img_ids[sequence].shape[0]
# TODO: reorganize the splits
load_left, load_right = (
not is_right
) or self.return_stereo, is_right or self.return_stereo
shuffle(self.stereo_offsets)
## randomly sample fisheye in the time steps where it can see the occlusion with the stereo
stereo_offsets = sorted(self.stereo_offsets[: self.frame_count - 1])
ids = [id] + [
max(min(id + offset * self.dilation, seq_len - 1), 0)
for offset in stereo_offsets
]
img_ids = [self.get_img_id_from_id(sequence, id) for id in ids]
pinhole_paths: List[Path] = []
for idx in img_ids:
if load_left:
pinhole_paths.append(
self.data_path
/ "data_2d_raw"
/ sequence
/ "image_00"
/ self.perspective_folder
/ f"{idx:010d}.png"
)
if load_right:
pinhole_paths.append(
self.data_path
/ "data_2d_raw"
/ sequence
/ "image_01"
/ self.perspective_folder
/ f"{idx:010d}.png"
)
fisheye_paths: List[Path] = []
if self.return_fisheye:
shuffle(self.fisheye_offsets)
fisheye_offsets = sorted(self.fisheye_offsets[: self.frame_count])
ids_fish = [
max(min(id + fisheye_offsets * self.dilation, seq_len - 1), 0)
for offset in fisheye_offsets
]
img_ids_fish = [self.get_img_id_from_id(sequence, id) for id in ids_fish]
for idx in img_ids_fish:
if load_left:
pinhole_paths.append(
self.data_path
/ "data_2d_raw"
/ sequence
/ "image_02"
/ self._fisheye_folder
/ f"{idx:010d}.png"
)
if load_right:
pinhole_paths.append(
self.data_path
/ "data_2d_raw"
/ sequence
/ "image_03"
/ self._fisheye_folder
/ f"{idx:010d}.png"
)
if self._is_preprocessed:
pinhole_paths.extend(fisheye_paths)
if self.return_fisheye and not self._is_preprocessed:
return {"pinhole": pinhole_paths, "fisheye": fisheye_paths}
else:
return {"pinhole": pinhole_paths}
def load_images(self, seq, img_ids, load_left, load_right, img_ids_fish=None):
imgs_p_left = []
imgs_f_left = []
imgs_p_right = []
imgs_f_right = []
if img_ids_fish is None:
img_ids_fish = img_ids
for id in img_ids:
if load_left:
img_perspective = (
cv2.cvtColor(
cv2.imread(
os.path.join(
self.data_path,
"data_2d_raw",
seq,
"image_00",
self._perspective_folder,
f"{id:010d}.png",
)
),
cv2.COLOR_BGR2RGB,
).astype(np.float32)
/ 255
)
imgs_p_left += [img_perspective]
if load_right:
img_perspective = (
cv2.cvtColor(
cv2.imread(
os.path.join(
self.data_path,
"data_2d_raw",
seq,
"image_01",
self._perspective_folder,
f"{id:010d}.png",
)
),
cv2.COLOR_BGR2RGB,
).astype(np.float32)
/ 255
)
imgs_p_right += [img_perspective]
for id in img_ids_fish:
if load_left:
img_fisheye = (
cv2.cvtColor(
cv2.imread(
os.path.join(
self.data_path,
"data_2d_raw",
seq,
"image_02",
self._fisheye_folder,
f"{id:010d}.png",
)
),
cv2.COLOR_BGR2RGB,
).astype(np.float32)
/ 255
)
imgs_f_left += [img_fisheye]
if load_right:
img_fisheye = (
cv2.cvtColor(
cv2.imread(
os.path.join(
self.data_path,
"data_2d_raw",
seq,
"image_03",
self._fisheye_folder,
f"{id:010d}.png",
)
),
cv2.COLOR_BGR2RGB,
).astype(np.float32)
/ 255
)
imgs_f_right += [img_fisheye]
return imgs_p_left, imgs_f_left, imgs_p_right, imgs_f_right
def process_img(
self,
img: np.ndarray,
color_aug_fn=None,
resampler: FisheyeToPinholeSampler | None = None,
):
if resampler is not None and not self._is_preprocessed:
img = torch.tensor(img).permute(2, 0, 1)
img = resampler.resample(img)
else:
if self.target_image_size:
img = cv2.resize(
img,
(self.target_image_size[1], self.target_image_size[0]),
interpolation=cv2.INTER_LINEAR,
)
img = np.transpose(img, (2, 0, 1))
img = torch.tensor(img)
if color_aug_fn is not None:
img = color_aug_fn(img)
img = img * 2 - 1
return img
def load_depth(self, seq, img_id, is_right):
points = np.fromfile(
os.path.join(
self.data_path,
"data_3d_raw",
seq,
"velodyne_points",
"data",
f"{img_id:010d}.bin",
),
dtype=np.float32,
).reshape(-1, 4)
points[:, 3] = 1.0
T_velo_to_cam = self._calibs["T_velo_to_cam"]["00" if not is_right else "01"]
K = self._calibs["K_perspective"]
# project the points to the camera
velo_pts_im = np.dot(K @ T_velo_to_cam[:3, :], points.T).T
velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., None]
# the projection is normalized to [-1, 1] -> transform to [0, height-1] x [0, width-1]
velo_pts_im[:, 0] = np.round(
(velo_pts_im[:, 0] * 0.5 + 0.5) * self.target_image_size[1]
)
velo_pts_im[:, 1] = np.round(
(velo_pts_im[:, 1] * 0.5 + 0.5) * self.target_image_size[0]
)
# check if in bounds
val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0)
val_inds = (
val_inds
& (velo_pts_im[:, 0] < self.target_image_size[1])
& (velo_pts_im[:, 1] < self.target_image_size[0])
)
velo_pts_im = velo_pts_im[val_inds, :]
# project to image
depth = np.zeros(self.target_image_size)
depth[
velo_pts_im[:, 1].astype(np.int32), velo_pts_im[:, 0].astype(np.int32)
] = velo_pts_im[:, 2]
# find the duplicate points and choose the closest depth
inds = (
velo_pts_im[:, 1] * (self.target_image_size[1] - 1) + velo_pts_im[:, 0] - 1
)
dupe_inds = [item for item, count in Counter(inds).items() if count > 1]
for dd in dupe_inds:
pts = np.where(inds == dd)[0]
x_loc = int(velo_pts_im[pts[0], 0])
y_loc = int(velo_pts_im[pts[0], 1])
depth[y_loc, x_loc] = velo_pts_im[pts, 2].min()
depth[depth < 0] = 0
return depth[None, :, :]
def _process_image(
self,
img: np.ndarray,
proj: np.ndarray,
pose: np.ndarray,
depth: np.ndarray | None,
camera_type: str,
aug_fn: dict[str, Any],
):
return {
"model": camera_type,
"imgs": img,
"proj": proj,
"pose": pose,
"depth": depth,
}
def _create_aug_fn(self) -> dict[str, Any]:
return {}
def __len__(self) -> int:
return self.length