Spaces:
Running
on
Zero
Running
on
Zero
from abc import abstractmethod | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def make_independent_token(conf, attn_feat): | |
token_type = conf.get("type", "FixedViewIndependentToken") | |
if token_type == "FixedViewIndependentToken": | |
return FixedViewIndependentToken(attn_feat) | |
elif token_type == "DataViewIndependentToken": | |
return DataViewIndependentToken(attn_feat) | |
elif token_type == "NeuRayIndependentToken": | |
return NeuRayIndependentToken(att_feat=attn_feat, **conf["args"]) | |
else: | |
raise NotImplementedError("Unsupported Token type") | |
class BaseIndependentToken(nn.Module): | |
def __init__(self, attn_feat: int) -> None: | |
super().__init__() | |
self.attn_feat = attn_feat | |
self.require_bottleneck_feats = False | |
def forward(self, view_dependent_tokens: torch.Tensor, **kwargs) -> torch.Tensor: | |
pass | |
class FixedViewIndependentToken(BaseIndependentToken): | |
def __init__(self, attn_feat: int) -> None: | |
super().__init__(attn_feat) | |
self.require_bottleneck_feats = False | |
self.readout_token = nn.Parameter(torch.rand(1, 1, attn_feat), requires_grad=True) | |
def forward(self, view_dependent_tokens: torch.Tensor, **kwargs) -> torch.Tensor: | |
return self.readout_token.expand(view_dependent_tokens.shape[0], -1, -1) ### (n_pts, 1, 16) | |
def weights_init(m): | |
if isinstance(m, nn.Linear): | |
nn.init.kaiming_normal_(m.weight.data) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias.data) | |
def fused_mean_variance(x, weight): | |
mean = torch.sum(x * weight, dim=-2, keepdim=True) | |
var = torch.sum(weight * (x - mean) ** 2, dim=-2, keepdim=True) | |
return mean, var | |
class DataViewIndependentToken(BaseIndependentToken): | |
def __init__(self, attn_feat: int) -> None: | |
super().__init__(attn_feat) | |
self.require_bottleneck_feats = False | |
self.eps = 1.0e-9 | |
self.layer = nn.Linear(2 * attn_feat, attn_feat, bias=True) | |
# def forward(self, view_dependent_tokens: torch.Tensor, invalid_mask: torch.Tensor) -> torch.Tensor: | |
def forward(self, view_dependent_tokens: torch.Tensor, **kwargs) -> torch.Tensor: | |
mask = 1 - kwargs["invalid_features"].float() | |
# mask = 1 - invalid_mask | |
weights = mask / (torch.sum(mask, dim=-1, keepdim=True) + 1e-8) | |
mean, var = fused_mean_variance(view_dependent_tokens, weights.unsqueeze(-1)) | |
# num_valid_tokens = torch.sum((1 - invalid_mask), dim=-1, keepdim=True) + self.eps | |
# mean = torch.sum(view_dependent_tokens * (1 - invalid_mask).unsqueeze(-1), dim=-2) / num_valid_tokens | |
# var = torch.sum((view_dependent_tokens - mean)**2 * (1 - invalid_mask).unsqueeze(-1), dim=-2) / num_valid_tokens | |
return nn.ELU()(self.layer(torch.cat([mean, var], dim=-1))) | |
class NeuRayIndependentToken(BaseIndependentToken): | |
def __init__( | |
self, | |
n_points_per_ray: int, | |
# neuray_in_dim: int = 32, | |
in_feat_ch: int = 32, | |
n_samples: int = 64, | |
att_feat: int = 16, | |
d_model: int = 103, | |
rbs: int = 2048, | |
**kwargs | |
): | |
super().__init__(att_feat) | |
self.n_points_per_ray = n_points_per_ray | |
self.require_bottleneck_feats = True | |
# self.args = args | |
self.anti_alias_pooling = False | |
if self.anti_alias_pooling: | |
self.s = nn.Parameter(torch.tensor(0.2), requires_grad=True) | |
activation_func = nn.ELU( | |
inplace=True | |
) ## (+): Mean Outputs Closer to Zero: want activations with mean outputs closer to zero. ## nn.LeakyReLU: (+): faster convergence, When the distribution of the negative values in your dataset is meaningful and shouldn't be discarded. | |
self.n_samples = n_samples | |
self.ray_dir_fc = nn.Sequential( | |
nn.Linear(4, 16), ## defualt: 4 | |
activation_func, | |
nn.Linear(16, in_feat_ch), ## default: in_feat_ch + 3 | |
activation_func, | |
) | |
self.base_fc = nn.Sequential( | |
nn.Linear((in_feat_ch) * 5 + att_feat, 64), ## default: ((in_feat_ch+3)*5+neuray_in_dim, 64) | |
activation_func, | |
nn.Linear(64, 32), | |
activation_func, | |
) | |
self.vis_fc = nn.Sequential( | |
nn.Linear(32, 32), | |
activation_func, | |
nn.Linear(32, 33), | |
activation_func, | |
) | |
self.vis_fc2 = nn.Sequential(nn.Linear(32, 32), activation_func, nn.Linear(32, 1), nn.Sigmoid()) | |
self.geometry_fc = nn.Sequential( | |
nn.Linear(32 * 2 + 1, att_feat * 2), ## default: (32*2+1, 64) | |
activation_func, | |
nn.Linear(att_feat * 2, att_feat), | |
activation_func, | |
) | |
# self.ray_attention = MultiHeadAttention(nhead, att_feat, 4, 4) ## default: (4, 16, 4, 4) | |
self.out_geometry_fc = nn.Sequential(nn.Linear(16, 16), activation_func, nn.Linear(16, 1), nn.ReLU()) | |
self.rgb_fc = nn.Sequential( | |
nn.Linear(32 + 1 + 4, 16), activation_func, nn.Linear(16, 8), activation_func, nn.Linear(8, 1) | |
) | |
self.neuray_fc = nn.Sequential( | |
nn.Linear( | |
att_feat, | |
8, | |
), | |
activation_func, | |
nn.Linear(8, 1), | |
) | |
self.img_feat2low = nn.Sequential( | |
nn.Linear(rbs, rbs // 4), ## TODO: replace this hard coded with the flexible | |
activation_func, | |
# nn.Linear(rbs // 4, d_model), | |
nn.Linear(rbs // 4, in_feat_ch), | |
) | |
# self.pos_encoding = self.posenc(d_hid=16, n_samples=self.n_samples) | |
self.base_fc.apply(weights_init) | |
self.vis_fc2.apply(weights_init) | |
self.vis_fc.apply(weights_init) | |
# self.geometry_fc.apply(weights_init) | |
self.rgb_fc.apply(weights_init) | |
self.neuray_fc.apply(weights_init) | |
def forward(self, view_dependent_tokens, bottleneck_feats, ray_diff, invalid_features, **kwargs): | |
"""ibrnet dim e.g. [6, 64, 8, 35] | |
:param rgb_feat: rgbs and image features [n_rays, n_samples, n_views, n_feat] == img_feat | |
:param neuray_feat: rgbs and image features [n_rays, n_samples, n_views, n_feat] == viz_feat | |
:param ray_diff: ray direction difference [n_rays, n_samples, n_views, 4], first 3 channels are directions, ## tensor encodes information about how rays in the novel view differ from rays in the source views | |
last channel is inner product | |
:param mask: mask for whether each projection is valid or not. [n_rays, n_samples, n_views, 1] | |
:return: rgb and density output, [n_rays, n_samples, 4] | |
""" | |
"""ibrnet dim e.g. [6, 64, 8, 35] | |
:param view_dependent_tokens: (B*n_pts, n_views, C) = (B*num_rays*point_per_ray, n_views, C) | |
:param bottleneck_features: (B*n_pts, n_views, C_bottleneck) = (B*num_rays*point_per_ray, n_views, C) | |
:param ray_diff: (B*n_pts, n_views, 4) = (B*num_rays*point_per_ray, n_views, 4) | |
:param invalid_features: (B*n_pts, n_views) = (B*num_rays*point_per_ray, n_views) | |
:return: rgb and density output, [n_rays, n_samples, 4] | |
""" | |
view_dependent_tokens = view_dependent_tokens.reshape( | |
(-1, self.n_points_per_ray) + view_dependent_tokens.shape[-2:] | |
) # (B*num_rays, point_per_ray, n_views, C) | |
bottleneck_feats = bottleneck_feats.reshape( | |
(-1, self.n_points_per_ray) + bottleneck_feats.shape[-2:] | |
) # (B*num_rays, point_per_ray, n_views, C_bottleneck) | |
ray_diff = ray_diff.reshape( | |
(-1, self.n_points_per_ray) + ray_diff.shape[-2:] | |
) # (B*num_rays, point_per_ray, n_views, 4) | |
invalid_features = invalid_features.reshape( | |
(-1, self.n_points_per_ray) + invalid_features.shape[-1:] | |
) # (B*num_rays, point_per_ray, n_views) | |
## Assumption: rgb_feat already contains image feature + dir_feat / this can be implemented further | |
mask = ~invalid_features.unsqueeze(-1) | |
num_views = bottleneck_feats.shape[2] | |
direction_feat = self.ray_dir_fc(ray_diff) | |
# rgb_in = rgb_feat[..., :3] ## no used in both original code and necessary code here | |
bottleneck_feats = self.img_feat2low(bottleneck_feats) | |
bottleneck_feats = bottleneck_feats + direction_feat | |
if self.anti_alias_pooling: | |
_, dot_prod = torch.split(ray_diff, [3, 1], dim=-1) | |
exp_dot_prod = torch.exp(torch.abs(self.s) * (dot_prod - 1)) | |
weight = (exp_dot_prod - torch.min(exp_dot_prod, dim=2, keepdim=True)[0]) * mask | |
weight = weight / ( | |
torch.sum(weight, dim=2, keepdim=True) + 1e-8 | |
) # means it will trust the one more with more consistent view point | |
else: | |
weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8) | |
# neuray layer 0 ## == feature aggregation networks (M) above pipeline from fig. 19 | |
weight0 = torch.sigmoid(self.neuray_fc(view_dependent_tokens)) * weight # [rn,dn,rfn,f] | |
mean0, var0 = fused_mean_variance(bottleneck_feats, weight0) # [n_rays, n_samples, 1, n_feat] ## 2nd one | |
mean1, var1 = fused_mean_variance(bottleneck_feats, weight) # [n_rays, n_samples, 1, n_feat] ## 1st one | |
globalfeat = torch.cat([mean0, var0, mean1, var1], dim=-1) # [n_rays, n_samples, 1, 2*n_feat] | |
x = torch.cat( | |
[globalfeat.expand(-1, -1, num_views, -1), bottleneck_feats, view_dependent_tokens], dim=-1 | |
) # [n_rays, n_samples, n_views, 3*n_feat] | |
x = self.base_fc(x) ## after concat it gives input for net A | |
x_vis = self.vis_fc(x * weight) | |
x_res, vis = torch.split(x_vis, [x_vis.shape[-1] - 1, 1], dim=-1) | |
vis = F.sigmoid(vis) * mask | |
x = x + x_res | |
vis = self.vis_fc2(x * vis) * mask ## above one from Network A from Fig. 19 | |
weight = vis / ( | |
torch.sum(vis, dim=2, keepdim=True) + 1e-8 | |
) ## normalized: weighed mean and var ## weight == buttom from net A [N, K, 32] | |
mean, var = fused_mean_variance(x, weight) | |
globalfeat = torch.cat( | |
[mean.squeeze(2), var.squeeze(2), weight.mean(dim=2)], dim=-1 | |
) # [n_rays, n_samples, 32*2+1] | |
globalfeat = self.geometry_fc(globalfeat) # [n_rays, n_samples, att_feat] ## MLP for input transformer | |
# num_valid_obs = torch.sum(mask, dim=2) | |
# num_valid_obs = num_valid_obs > torch.mean(num_valid_obs, dtype=float) ## making boolean | |
return globalfeat.flatten(0, 1).unsqueeze(-2) # (B*num_rays*point_per_ray, 1, C) | |
# return globalfeat, num_valid_obs | |
# class IBRNetWithNeuRay(nn.Module): | |
# def __init__( | |
# self, neuray_in_dim=32, in_feat_ch=32, n_samples=64, att_feat=16, d_model=103, rbs=2048, nhead=4, **kwargs | |
# ): | |
# super().__init__() | |
# # self.args = args | |
# self.anti_alias_pooling = False | |
# if self.anti_alias_pooling: | |
# self.s = nn.Parameter(torch.tensor(0.2), requires_grad=True) | |
# activation_func = nn.ELU( | |
# inplace=True | |
# ) ## (+): Mean Outputs Closer to Zero: want activations with mean outputs closer to zero. ## nn.LeakyReLU: (+): faster convergence, When the distribution of the negative values in your dataset is meaningful and shouldn't be discarded. | |
# self.n_samples = n_samples | |
# self.ray_dir_fc = nn.Sequential( | |
# nn.Linear(4, 16), ## defualt: 4 | |
# activation_func, | |
# nn.Linear(16, in_feat_ch), ## default: in_feat_ch + 3 | |
# activation_func, | |
# ) | |
# self.base_fc = nn.Sequential( | |
# nn.Linear((in_feat_ch) * 5 + neuray_in_dim, 64), ## default: ((in_feat_ch+3)*5+neuray_in_dim, 64) | |
# activation_func, | |
# nn.Linear(64, 32), | |
# activation_func, | |
# ) | |
# self.vis_fc = nn.Sequential( | |
# nn.Linear(32, 32), | |
# activation_func, | |
# nn.Linear(32, 33), | |
# activation_func, | |
# ) | |
# self.vis_fc2 = nn.Sequential(nn.Linear(32, 32), activation_func, nn.Linear(32, 1), nn.Sigmoid()) | |
# self.geometry_fc = nn.Sequential( | |
# nn.Linear(32 * 2 + 1, att_feat * 2), ## default: (32*2+1, 64) | |
# activation_func, | |
# nn.Linear(att_feat * 2, att_feat), | |
# activation_func, | |
# ) | |
# # self.ray_attention = MultiHeadAttention(nhead, att_feat, 4, 4) ## default: (4, 16, 4, 4) | |
# self.out_geometry_fc = nn.Sequential(nn.Linear(16, 16), activation_func, nn.Linear(16, 1), nn.ReLU()) | |
# self.rgb_fc = nn.Sequential( | |
# nn.Linear(32 + 1 + 4, 16), activation_func, nn.Linear(16, 8), activation_func, nn.Linear(8, 1) | |
# ) | |
# self.neuray_fc = nn.Sequential( | |
# nn.Linear( | |
# neuray_in_dim, | |
# 8, | |
# ), | |
# activation_func, | |
# nn.Linear(8, 1), | |
# ) | |
# self.img_feat2low = nn.Sequential( | |
# nn.Linear(rbs, rbs // 4), ## TODO: replace this hard coded with the flexible | |
# activation_func, | |
# nn.Linear(rbs // 4, d_model), | |
# ) | |
# # self.pos_encoding = self.posenc(d_hid=16, n_samples=self.n_samples) | |
# self.base_fc.apply(weights_init) | |
# self.vis_fc2.apply(weights_init) | |
# self.vis_fc.apply(weights_init) | |
# # self.geometry_fc.apply(weights_init) | |
# self.rgb_fc.apply(weights_init) | |
# self.neuray_fc.apply(weights_init) | |
# def forward(self, rgb_feat, neuray_feat, ray_diff, mask): | |
# """ibrnet dim e.g. [6, 64, 8, 35] | |
# :param rgb_feat: rgbs and image features [n_rays, n_samples, n_views, n_feat] == img_feat | |
# :param neuray_feat: rgbs and image features [n_rays, n_samples, n_views, n_feat] == viz_feat | |
# :param ray_diff: ray direction difference [n_rays, n_samples, n_views, 4], first 3 channels are directions, ## tensor encodes information about how rays in the novel view differ from rays in the source views | |
# last channel is inner product | |
# :param mask: mask for whether each projection is valid or not. [n_rays, n_samples, n_views, 1] | |
# :return: rgb and density output, [n_rays, n_samples, 4] | |
# """ | |
# ## Assumption: rgb_feat already contains image feature + dir_feat / this can be implemented further | |
# num_views = rgb_feat.shape[2] | |
# direction_feat = self.ray_dir_fc(ray_diff) | |
# # rgb_in = rgb_feat[..., :3] ## no used in both original code and necessary code here | |
# rgb_feat = self.img_feat2low(rgb_feat) | |
# rgb_feat = rgb_feat + direction_feat | |
# if self.anti_alias_pooling: | |
# _, dot_prod = torch.split(ray_diff, [3, 1], dim=-1) | |
# exp_dot_prod = torch.exp(torch.abs(self.s) * (dot_prod - 1)) | |
# weight = (exp_dot_prod - torch.min(exp_dot_prod, dim=2, keepdim=True)[0]) * mask | |
# weight = weight / ( | |
# torch.sum(weight, dim=2, keepdim=True) + 1e-8 | |
# ) # means it will trust the one more with more consistent view point | |
# else: | |
# weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8) | |
# # neuray layer 0 ## == feature aggregation networks (M) above pipeline from fig. 19 | |
# weight0 = torch.sigmoid(self.neuray_fc(neuray_feat)) * weight # [rn,dn,rfn,f] | |
# mean0, var0 = fused_mean_variance(rgb_feat, weight0) # [n_rays, n_samples, 1, n_feat] ## 2nd one | |
# mean1, var1 = fused_mean_variance(rgb_feat, weight) # [n_rays, n_samples, 1, n_feat] ## 1st one | |
# globalfeat = torch.cat([mean0, var0, mean1, var1], dim=-1) # [n_rays, n_samples, 1, 2*n_feat] | |
# x = torch.cat( | |
# [globalfeat.expand(-1, -1, num_views, -1), rgb_feat, neuray_feat], dim=-1 | |
# ) # [n_rays, n_samples, n_views, 3*n_feat] | |
# x = self.base_fc(x) ## after concat it gives input for net A | |
# x_vis = self.vis_fc(x * weight) | |
# x_res, vis = torch.split(x_vis, [x_vis.shape[-1] - 1, 1], dim=-1) | |
# vis = F.sigmoid(vis) * mask | |
# x = x + x_res | |
# vis = self.vis_fc2(x * vis) * mask ## above one from Network A from Fig. 19 | |
# weight = vis / ( | |
# torch.sum(vis, dim=2, keepdim=True) + 1e-8 | |
# ) ## normalized: weighed mean and var ## weight == buttom from net A [N, K, 32] | |
# mean, var = fused_mean_variance(x, weight) | |
# globalfeat = torch.cat( | |
# [mean.squeeze(2), var.squeeze(2), weight.mean(dim=2)], dim=-1 | |
# ) # [n_rays, n_samples, 32*2+1] | |
# globalfeat = self.geometry_fc(globalfeat) # [n_rays, n_samples, att_feat] ## MLP for input transformer | |
# # num_valid_obs = torch.sum(mask, dim=2) | |
# # num_valid_obs = num_valid_obs > torch.mean(num_valid_obs, dtype=float) ## making boolean | |
# return globalfeat | |
# # return globalfeat, num_valid_obs | |