jev-aleks's picture
scenedino init
9e15541
from copy import copy
import logging
from pathlib import Path
import ignite.distributed as idist
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import Subset
from torch import profiler
import lpips
from scenedino.datasets import make_datasets
from scenedino.losses import make_loss
from scenedino.common.image_processor import make_image_processor, RGBProcessor
from scenedino.common.ray_sampler import (
ImageRaySampler,
PointBasedRaySampler,
RandomRaySampler,
RaySampler,
get_ray_sampler,
)
from scenedino.common.io.configs import load_model_config
from scenedino.common.sampling_strategies import (
get_encoder_sampling,
get_loss_renderer_sampling,
)
from scenedino.models import make_model
from scenedino.models.backbones.dino.dinov2_module import OrthogonalLinearDimReduction
# TODO: change
from scenedino.training.base_trainer import base_training
from scenedino.common.scheduler import make_scheduler
from scenedino.renderer import NeRFRenderer
from torch.cuda.amp import autocast
from scenedino.common import util
logger = logging.getLogger("training")
class BTSWrapper(nn.Module):
def __init__(
self, renderer: NeRFRenderer, ray_sampler: RaySampler, config, eval_nvs=False, dino_channels=None
) -> None:
super().__init__()
self.renderer = renderer
self.loss_from_single_img = config.get("loss_from_single_img", False)
self.use_automasking = config.get("use_automasking", False)
self.prediction_mode = config.get("prediction_mode", "multiscale")
self.alternating_ratio = config.get("alternating_ratio", None)
self.encoder_sampling = get_encoder_sampling(config["encoding_strategy"])
self.eval_encoder_sampling = get_encoder_sampling(
config["eval_encoding_strategy"]
)
self.loss_renderer_sampling = get_loss_renderer_sampling(
config["loss_renderer_strategy"]
)
self.eval_loss_renderer_sampling = get_loss_renderer_sampling(
config["eval_loss_renderer_strategy"]
)
cfg_ip = config.get("image_processor", {})
self.train_image_processor = make_image_processor(cfg_ip)
self.val_image_processor = RGBProcessor() if not self.renderer.renderer.render_flow else make_image_processor({"type": "flow_occlusion"})
self.ray_sampler = ray_sampler
if self.use_automasking:
self.train_sampler.channels += 1
self.val_sampler = ImageRaySampler(
self.ray_sampler.z_near, self.ray_sampler.z_far, dino_upscaled=self.ray_sampler.dino_upscaled
)
self.predict_uncertainty = config.get("predict_uncertainty", False)
self.uncertainty_predictor_res = config.get("uncertainty_predictor_res", 0)
self.predict_consistency = config.get("predict_consistency", False)
if self.predict_consistency:
z_near = self.ray_sampler.z_near
z_far = self.ray_sampler.z_far
consistency_rays = config.get("consistency_rays", 512)
self.random_ray_sampler = RandomRaySampler(z_near, z_far, consistency_rays)
self.point_ray_sampler = PointBasedRaySampler(z_near, z_far, consistency_rays)
if self.predict_uncertainty:
assert self.renderer.net.uncertainty_predictor is not None
self.eval_nvs = eval_nvs
if self.eval_nvs:
self.lpips = lpips.LPIPS(net="alex")
self._counter = 0
self.compensate_artifacts = config.get("compensate_artifacts", True)
if self.compensate_artifacts:
patch_size = renderer.net.encoder.gt_encoder.patch_size
image_size = renderer.net.encoder.gt_encoder.image_size
latent_size = renderer.net.encoder.gt_encoder.latent_size
self.artifact_field = nn.Parameter(torch.zeros(latent_size, image_size[0]//patch_size, image_size[1]//patch_size))
nn.init.normal_(self.artifact_field, mean=0.0, std=0.001)
else:
self.artifact_field = None
@staticmethod
def get_loss_metric_names():
return [
"loss",
"loss_l2",
"loss_mask",
"loss_temporal",
"loss_pgt",
]
def forward(self, data):
data = dict(data)
images = torch.stack(data["imgs"], dim=1) # B, n_framnes, c, h, w
poses = torch.stack(data["poses"], dim=1) # B, n_framnes, 4, 4 w2c
projs = torch.stack(data["projs"], dim=1) # B, n_frames, 4, 4 (-1, 1)
data_index = data["index"]
n, n_frames, c, h, w = images.shape
device = images.device
with autocast(enabled=False):
to_base_pose = torch.inverse(poses[:, :1, :, :])
poses = to_base_pose.expand(-1, n_frames, -1, -1) @ poses
if self.training and self.alternating_ratio is not None:
step = self._counter % (self.alternating_ratio + 1)
if step < self.alternating_ratio:
for params in self.renderer.net.encoder.parameters(True):
params.requires_grad_(True)
for params in self.renderer.net.mlp_coarse.parameters(True):
params.requires_grad_(False)
else:
for params in self.renderer.net.encoder.parameters(True):
params.requires_grad_(False)
for params in self.renderer.net.mlp_coarse.parameters(True):
params.requires_grad_(True)
if self.training:
ids_encoder = self.encoder_sampling(n_frames)
ids_loss, ids_renderer, color_frame_filter = self.loss_renderer_sampling(n_frames)
else:
ids_encoder = self.eval_encoder_sampling(n_frames)
ids_loss, ids_renderer, color_frame_filter = self.eval_loss_renderer_sampling(n_frames)
combine_ids = None
if self.loss_from_single_img:
ids_loss = ids_loss[:1]
if color_frame_filter is not None:
color_frame_filter = torch.tensor(color_frame_filter, device=images.device)
ip = self.train_image_processor if self.training else self.val_image_processor
images_ip = ip(images)
if self.predict_uncertainty:
images_uncert = images.reshape(-1, c, h, w)
uncertainties = self.renderer.net.uncertainty_predictor(images_uncert)
uncertainties = F.interpolate(uncertainties[self.uncertainty_predictor_res], (h, w), mode="bilinear", align_corners=False)
uncertainties = F.softplus(uncertainties).reshape(n, -1, 1, h, w)
images_ip = torch.cat((images_ip, uncertainties), dim=2)
with profiler.record_function(
"trainer_encode-grid"
):
self.renderer.net.compute_grid_transforms(
projs[:, ids_encoder], poses[:, ids_encoder]
)
shift = self.renderer.net.encoder.encoder.patch_size // 2
loss_feature_grid_shift = torch.randint(-shift, shift, (2,)) if self.training else None
self.renderer.net.encode(
images,
projs,
poses,
ids_encoder=ids_encoder,
ids_render=ids_renderer,
ids_loss=ids_loss,
images_alt=images_ip,
combine_ids=combine_ids,
color_frame_filter=color_frame_filter,
loss_feature_grid_shift=loss_feature_grid_shift,
)
sampler = self.ray_sampler if self.training else self.val_sampler
with autocast(enabled=False), profiler.record_function("trainer_sample-rays"):
renderer_scale = self.renderer.net._scale
dino_features = self.renderer.net.grid_l_loss_features[renderer_scale]
if self.artifact_field is not None:
dino_features = torch.cat(torch.broadcast_tensors(dino_features, self.artifact_field), dim=2)
if loss_feature_grid_shift is not None:
all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
dino_features=dino_features, loss_feature_grid_shift=loss_feature_grid_shift
)
else:
all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
dino_features=dino_features
)
if self.artifact_field is not None:
all_dino_artifacts = all_dino_gt[:, :, self.artifact_field.shape[0]:]
all_dino_gt = all_dino_gt[:, :, :self.artifact_field.shape[0]]
else:
all_dino_artifacts = None
data["fine"], data["coarse"] = [], []
scales = list(
self.renderer.net.encoder.scales
if self.prediction_mode == "multiscale"
else [self.renderer.net.get_scale()]
)
for scale in scales:
self.renderer.net.set_scale(scale)
using_fine = self.renderer.renderer.using_fine
if scale == 0:
with profiler.record_function("trainer_render"):
render_dict = self.renderer(
all_rays,
want_weights=True,
want_alphas=True,
want_rgb_samps=True,
)
else:
using_fine = self.renderer.renderer.using_fine
self.renderer.renderer.using_fine = False
render_dict = self.renderer(
all_rays,
want_weights=True,
want_alphas=True,
want_rgb_samps=False,
)
self.renderer.renderer.using_fine = using_fine
# if "fine" not in render_dict:
# render_dict["fine"] = dict(render_dict["coarse"])
render_dict["rgb_gt"] = all_rgb_gt
render_dict["rays"] = all_rays
render_dict["dino_gt"] = all_dino_gt.float()
if all_dino_artifacts is not None:
render_dict["dino_artifacts"] = all_dino_artifacts.float()
render_dict = sampler.reconstruct(render_dict,
channels=images_ip.shape[2],
dino_channels=self.renderer.net.encoder.dino_pca_dim)
if "fine" in render_dict:
data["fine"].append(render_dict["fine"])
data["coarse"].append(render_dict["coarse"])
data["rgb_gt"] = render_dict["rgb_gt"]
data["dino_gt"] = render_dict["dino_gt"]
if "dino_artifacts" in render_dict:
data["dino_artifacts"] = render_dict["dino_artifacts"]
data["rays"] = render_dict["rays"]
dino_module = self.renderer.net.encoder
if isinstance(dino_module.dim_reduction, OrthogonalLinearDimReduction):
data["reduction_matrix"] = dino_module.dim_reduction.weights
downsampling_mode = "patch" if self.training else "image"
for _data_coarse in data["coarse"]:
_data_coarse["dino_features"] = dino_module.expand_dim(_data_coarse["dino_features"])
downsampling_result = dino_module.downsample(_data_coarse["dino_features"], downsampling_mode)
if isinstance(downsampling_result, tuple):
(_data_coarse["dino_features_downsampled"],
_data_coarse["dino_features_salience_map"],
_data_coarse["dino_features_weight_map"],
_data_coarse["dino_features_per_patch_weight"]) = downsampling_result
elif downsampling_result is not None:
_data_coarse["dino_features_downsampled"] = downsampling_result
if not self.training and self.validation_tag == "visualization":
logger.info("Visualizing a batch...")
with torch.amp.autocast(render_dict["dino_gt"].device.type, enabled=False):
dino_module.fit_visualization(render_dict["dino_gt"].flatten(0, -2))
data["vis_batch_dino_gt"] = [
dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=0),
dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=3),
dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=6),
]
#data["vis_batch_dino_gt_kmeans"] = dino_module.fit_transform_kmeans_visualization(data["dino_gt"])
for _data_coarse in data["coarse"]:
with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False):
dino_module.fit_visualization(_data_coarse["dino_features"].flatten(0, -2))
_data_coarse["vis_batch_dino_features"] = [
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6),
]
#_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"])
if "dino_features_downsampled" in _data_coarse:
_data_coarse["vis_batch_dino_features_downsampled"] = [
dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=0),
dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=3),
dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=6),
]
if "dino_artifacts" in data:
with torch.amp.autocast(render_dict["dino_gt"].device.type, enabled=False):
dino_module.fit_visualization(render_dict["dino_artifacts"].flatten(0, -2))
data["vis_batch_dino_artifacts"] = [
dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=0),
dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=3),
dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=6),
]
if self.training:
data["feature_volume"] = self.renderer.net.grid_f_features[0]
if self.predict_consistency and self.training:
cf = 1
data["consistency"] = []
rays_0, rgb_gt_0 = self.random_ray_sampler.sample(
images_ip[:, :1], poses[:, :1], projs[:, :1]
)
render_dict_0 = self.renderer(
rays_0,
want_weights=False,
want_alphas=False,
want_rgb_samps=False,
)
render_dict_0["rgb_gt"] = rgb_gt_0
render_dict_0["rays"] = rays_0
render_dict_0 = self.random_ray_sampler.reconstruct(render_dict_0, channels=images_ip.shape[2])
xyz = rays_0[..., :3] + rays_0[..., 3:6] / torch.norm(rays_0[..., 3:6], keepdim=True, dim=-1) * render_dict_0["coarse"]["depth"][..., None]
rays_1, rgb_gt_1 = self.point_ray_sampler.sample(
images_ip[:, cf:cf+1], poses[:, cf:cf+1], projs[:, cf:cf+1], xyz
)
self.renderer.net.encode(
images[:, cf:cf+1],
projs[:, cf:cf+1],
poses[:, cf:cf+1],
images_alt=images_ip[:, cf:cf+1],
)
render_dict_1 = self.renderer(
rays_1,
want_weights=True,
want_alphas=False,
want_rgb_samps=False,
)
render_dict_1["rgb_gt"] = rgb_gt_1
render_dict_1["rays"] = rays_1
render_dict_1 = self.point_ray_sampler.reconstruct(render_dict_1, channels=images_ip.shape[2])
data["consistency"] = {
"render_dict_0": render_dict_0,
"render_dict_1": render_dict_1,
}
data["z_near"] = torch.tensor(self.ray_sampler.z_near, device=images.device)
data["z_far"] = torch.tensor(self.ray_sampler.z_far, device=images.device)
surface_sample = self.sample_from_3d(poses, projs, data["coarse"][0]["depth"])
if surface_sample is not None:
data["sample_surface_dino_features"], data["sample_surface_sigma"] = surface_sample
if self.training:
self._counter += 1
return data
def sample_from_3d(self, poses, projs, depth, z_near=2, z_far=50, n_crops=5, n_samples=576, sample_radius=0.1):
positions_samples = []
n = projs.size(0)
for n_ in range(n):
focals = projs[n_, :1, [0, 1], [0, 1]]
centers = projs[n_, :1, [0, 1], [2, 2]]
_, _, height, width = depth.shape
rays, _ = util.gen_rays(
poses[n_, :1].view(-1, 4, 4),
width,
height,
focal=focals,
c=centers,
z_near=0,
z_far=0,
norm_dir=True,
)
current_depth = depth[n_, 0] # [h, w]
valid_positions = torch.nonzero((current_depth > z_near) & (current_depth < z_far), as_tuple=False)
if valid_positions.size(0) < n_crops: # Not enough samples in depth range (z_near, z_far)
return None
sampled_positions = valid_positions[torch.randperm(valid_positions.size(0))[:n_crops]]
cam_centers = rays[0, :, :, :3] # [h, w, 3]
cam_raydir = rays[0, :, :, 3:6] # [h, w, 3]
depth_crop = current_depth[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops]
cam_centers_crop = cam_centers[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3]
cam_raydir_crop = cam_raydir[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3]
positions_crop = cam_centers_crop + cam_raydir_crop * depth_crop.unsqueeze(-1) # [n_crops, 3]
random_shifts = sample_radius * torch.randn(n_crops, n_samples, 3, device=positions_crop.device) # [n_crops, n_samples, 3]
# random_shifts = random_shifts * depth_crop[:, None, None] / 5.0
positions_samples.append(positions_crop.unsqueeze(1) + random_shifts) # [n_crops, n_samples, 3]
positions_samples = torch.stack(positions_samples, dim=0) # [n, n_crops, n_samples, 3]
_, _, sigma, _, state_dict = self.renderer.net(positions_samples.flatten(1, -2)) # [n, n_crops*n_samples, ...]
sigma = sigma.view(n, n_crops, n_samples, -1)
dino = state_dict["dino_features"].view(n, n_crops, n_samples, -1)
return self.renderer.net.encoder.expand_dim(dino), 1 - torch.exp(-sigma)
def training(local_rank, config):
return base_training(
local_rank,
config,
get_dataflow,
initialize,
)
def get_subset(config, len_dataset: int):
subset_type = config.get("type", None)
match subset_type:
case "random":
return torch.sort(
torch.randperm(len_dataset)[: config["args"]["size"]]
)[0].tolist()
case "range":
return list(
range(
config["args"].get("start", 0),
config["args"].get("end", len_dataset),
)
)
case _:
return list(range(len_dataset))
# NOTE: type hints are difficult but should be tuple[DataLoader, dict[str, DataLoader]]
def get_dataflow(config):
# TODO: change to reflect evaluation
# - Get train/test datasets
if idist.get_local_rank() > 0:
# Ensure that only local rank 0 download the dataset
# Thus each node will download a copy of the dataset
idist.barrier()
# REMOVE: ?
mode = config.get("mode", "depth")
train_dataset, test_dataset = make_datasets(config["dataset"])
train_loader = idist.auto_dataloader(
train_dataset,
batch_size=config["batch_size"],
num_workers=config["num_workers"],
shuffle=True,
drop_last=True,
)
validation_loaders = {}
for name, validation_config in config["validation"].items():
dataset = copy(test_dataset)
# TODO: check the following configs
# dataset.frame_count = (
# 1
# if isinstance(train_dataset, KittiRawDataset)
# or isinstance(train_dataset, KittiOdometryDataset)
# else 2
# )
dataset._left_offset = 0
dataset.return_stereo = True
dataset.return_depth = True
subset = Subset(dataset, get_subset(validation_config["subset"], len(dataset)))
validation_loaders[name] = idist.auto_dataloader(
subset,
batch_size=validation_config.get("batch_size", 1),
num_workers=0, # Find issue here
shuffle=False,
)
if idist.get_local_rank() == 0:
# Ensure that only local rank 0 download the dataset
idist.barrier()
return train_loader, validation_loaders
def initialize(config: dict):
# Continue if checkpoint already exists
if config["training"].get("continue", False):
prefix = "training_checkpoint_"
ckpts = Path(config["output"]["path"]).glob(f"{prefix}*.pt")
# TODO: probably correct logic but please check
training_steps = [int(ckpt.stem.split(prefix)[1]) for ckpt in ckpts]
if training_steps:
config["training"]["resume_from"] = (
Path(config["output"]["path"]) / f"{prefix}{max(training_steps)}.pt"
)
# TODO: think about this again
if config["training"].get("continue", False) and config["training"].get(
"resume_from", None
):
config_path = Path(config["output"]["path"])
logger.info(f"Loading model config from {config_path}")
load_model_config(config_path, config)
net = make_model(config["model"])
renderer = NeRFRenderer.from_conf(config["renderer"])
renderer = renderer.bind_parallel(net, gpus=None).eval()
mode = config.get("mode", "depth")
ray_sampler = get_ray_sampler(config["training"]["ray_sampler"])
model = BTSWrapper(renderer, ray_sampler, config["model"], mode == "nvs")
model = idist.auto_model(model)
dino_decoder_optim_args = config["training"]["optimizer"]["args"].copy()
dino_decoder_optim_args["lr"] = dino_decoder_optim_args["lr"]
dino_encoder_optim_args = config["training"]["optimizer"]["args"].copy()
dino_encoder_optim_args["lr"] = dino_encoder_optim_args["lr"] / 10 # for fine-tuning
# TODO: make optimizer itself configurable configurable
optimizer = optim.Adam(
[
{"params": (p for n, p in model.named_parameters() if not (n.startswith('renderer.net.encoder.encoder.') or n.startswith('renderer.net.encoder.decoder.'))),
**config["training"]["optimizer"]["args"]},
{"params": model.renderer.net.encoder.decoder.parameters(),
**dino_decoder_optim_args},
{"params": model.renderer.net.encoder.encoder.parameters(),
**dino_encoder_optim_args},
]
)
optimizer = idist.auto_optim(optimizer)
lr_scheduler = make_scheduler(config["training"].get("scheduler", {}), optimizer)
# TODO: change to reflect all the losses together with the config
# TODO: integrate lambda for all losses
criterion = [
make_loss(config_loss)
for config_loss in config["training"]["loss"]
# ReconstructionLoss(
# config["training"]["loss"], config["model"].get("use_automasking", False)
# )
]
return model, optimizer, criterion, lr_scheduler