SceneDINO / sscbench /generate_ply_sequence.py
jev-aleks's picture
scenedino init
9e15541
import argparse
import sys
from omegaconf import open_dict
import matplotlib.pyplot as plt
sys.path.append(".")
from gen_voxelgrid_npy import save_as_voxel_ply
import logging
from pathlib import Path
import subprocess
import yaml
import cv2
import os
import numpy as np
from tqdm import tqdm
import pickle
import torch
from torch import nn
import torch.nn.functional as F
from hydra import compose, initialize
import matplotlib.pyplot as plt
# from datasets.kitti_360.kitti_360_dataset import Kitti360Dataset
from fusion import TSDFVolume, rigid_transform
from sscbench_dataset import SSCBenchDataset
from pathlib import Path
RELOAD_DATASET = True
DATASET_LENGTH = 100
FULL_EVAL = True
SAMPLE_EVERY = None
SAMPLE_OFFSET = 2
# SAMPLE_RANGE = list(range(1000, 1600))
SAMPLE_RANGE = None
import time
SIZE = 51.2 # Can be: 51.2, 25.6, 12.8
SIZES = (12.8, 25.6, 51.2)
VOXEL_SIZE = 0.1 # Needs: 0.2 % VOXEL_SIZE == 0
USE_CUSTOM_CUTOFFS = False
SIGMA_CUTOFF = 0.25
USE_ALPHA_WEIGHTING = True
USE_MAXPOOLING = False
GENERATE_PLY_FILES = True
PLY_ONLY_FOV = True
# PLY_IDS = [2235, 2495, 2385, 3385, 4360, 6035, 8575, 9010, 11260] # 10:40
# PLY_IDS = [2495, 6035, 8575, 9010, 11260] # 10
#PLY_IDS = [125, 5475, 6035, 6670, 6775, 7860, 8000]
# PLY_IDS = list(range(1000, 1600))
PLY_IDS = None
# PLY_PATH = Path("/usr/stud/hayler/dev/BehindTheScenes/scripts/benchmarks/sscbench/ply10_fov")
PLY_PATH = Path("<PATH-TO-PLY-OUTPUT>")
PLY_SIZES = [12.8, 25.6, 51.2]
if GENERATE_PLY_FILES:
assert (not USE_MAXPOOLING) and VOXEL_SIZE == 0.1
# make the necessary dirs
for size in PLY_SIZES:
if not os.path.exists(PLY_PATH / str(int(size))):
os.makedirs(PLY_PATH / str(int(size)))
# Setup of CUDA device and logging
os.system("nvidia-smi")
device = f'cuda:0'
# DO NOT TOUCH OR YOU WILL BREAK RUNS (should be None)
gpu_id = None
if gpu_id is not None:
print("GPU ID: " + str(gpu_id))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
logging.basicConfig(level=logging.INFO)
times = []
def downsample_and_predict(data, net, pts, factor):
pts = pts.reshape(256*factor, 256*factor, 32*factor, 3)
sigmas = torch.zeros(256, 256, 32).numpy()
segs = torch.zeros(256, 256, 32).numpy()
chunk_size_x = chunk_size_y = 256
chunk_size_z = 32
n_chunks_x = int(256*factor / chunk_size_x)
n_chunks_y = int(256*factor / chunk_size_y)
n_chunks_z = int(32*factor / chunk_size_z)
b_x = chunk_size_x // factor # size of the mini blocks
b_y = chunk_size_y // factor
b_z = chunk_size_z // factor
for i in range(n_chunks_x):
for j in range(n_chunks_y):
for k in range(n_chunks_z):
pts_block = pts[i * chunk_size_x:(i + 1) * chunk_size_x, j * chunk_size_y:(j + 1) * chunk_size_y, k * chunk_size_z:(k + 1) * chunk_size_z]
sigmas_block, segs_block = predict_grid(data, net, pts_block)
sigmas_block = sigmas_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z)
segs_block = segs_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, 19)
if USE_ALPHA_WEIGHTING:
alphas = 1 - torch.exp(- VOXEL_SIZE * sigmas_block)
segs_block = (alphas.unsqueeze(-1) * segs_block).unsqueeze(0)
else:
segs_block = (sigmas_block.unsqueeze(-1) * segs_block).unsqueeze(0)
segs_pool_list = [F.avg_pool3d(segs_block[..., i], kernel_size=factor, stride=factor, padding=0) for i in
range(segs_block.shape[-1])]
segs_pool = torch.stack(segs_pool_list, dim=-1).unsqueeze(0)
segs_pool = torch.argmax(segs_pool, dim=-1).detach().cpu().numpy()
# pool the observations
sigmas_block = F.max_pool3d(sigmas_block.unsqueeze(0), kernel_size=factor, stride=factor, padding=0).squeeze(0).detach().cpu().numpy()
sigmas[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = sigmas_block
segs[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = segs_pool
torch.cuda.empty_cache()
if USE_MAXPOOLING:
sigmas = F.max_pool3d(torch.tensor(sigmas).unsqueeze(0), kernel_size=3, stride=1, padding=1).squeeze(0).numpy()
return sigmas, segs
def use_custom_maxpool(_sigmas):
sigmas = torch.zeros(258, 258, 34)
sigmas[1:257, 1:257, 1:33] = torch.tensor(_sigmas)
sigmas_pooled = torch.zeros(256, 256, 32)
for i in range(256):
for j in range(256):
for k in range(32):
sigmas_pooled[i, j, k] = max(sigmas[i+1, j+1, k+1],
sigmas[i, j+1, k+1], sigmas[i+1, j, k+1],sigmas[i+1, j+1, k],
sigmas[i+2, j+1, k+1], sigmas[i+1, j+2, k+1],sigmas[i+1, j+1, k+2])
return sigmas_pooled
def plot_images(images_dict):
"""The images dict should include six images and six corresponding ids"""
images = images_dict["images"]
ids = images_dict["ids"]
fig, axes = plt.subplots(3, 2, figsize=(10, 6))
axes = axes.flatten()
for i, img in enumerate(images):
axes[i].imshow(images[i])
axes[i].axis("off")
axes[i].set_title(f"FrameId: {ids[i]}")
plt.subplots_adjust(wspace=0.01, hspace=0.01)
plt.show()
def plot_image_at_frame_id(dataset, frame_id):
for i in range(len(dataset)):
sequence, id, is_right = dataset._datapoints[i]
if id == frame_id:
data = dataset[i]
plt.figure(figsize=(10, 4))
plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))
plt.gca().set_axis_off()
plt.show()
return
def identify_additional_invalids(target):
# Note: The Numpy implementation is a bit faster (about 0.1 seconds per iteration)
_t = np.concatenate([np.zeros([256, 256, 1]), target], axis=2)
invalids = np.cumsum(np.logical_and(_t != 255, _t != 0), axis=2)[:, :, :32] == 0
# _t = torch.cat([torch.zeros([256, 256, 1], device=device, dtype=torch.int32), torch.tensor(target, dtype=torch.int32).to(device)], dim=2)
# invalids = torch.cumsum((_t != 255) & (_t != 0), axis=2)[:,:, :32] == 0
# height cut-off (z > 6 ==> no invalid)
invalids[: , :, 7:] = 0
# only empty voxels matter
invalids[target != 0] = 0
# return invalids.cpu().numpy()
return invalids
def generate_point_grid(cam_E, vox_origin, voxel_size, scene_size, cam_k, img_W=1408, img_H=376):
"""
compute the 2D projection of voxels centroids
Parameters:
----------
cam_E: 4x4
=camera pose in case of NYUv2 dataset
=Transformation from camera to lidar coordinate in case of SemKITTI
cam_k: 3x3
camera intrinsics
vox_origin: (3,)
world(NYU)/lidar(SemKITTI) cooridnates of the voxel at index (0, 0, 0)
img_W: int
image width
img_H: int
image height
scene_size: (3,)
scene size in meter: (51.2, 51.2, 6.4) for SemKITTI and (4.8, 4.8, 2.88) for NYUv2
Returns
-------
projected_pix: (N, 2)
Projected 2D positions of voxels
fov_mask: (N,)
Voxels mask indice voxels inside image's FOV
pix_z: (N,)
Voxels'distance to the sensor in meter
"""
# Compute the x, y, z bounding of the scene in meter
vol_bnds = np.zeros((3, 2))
vol_bnds[:, 0] = vox_origin
vol_bnds[:, 1] = vox_origin + np.array(scene_size)
# Compute the voxels centroids in lidar cooridnates
vol_dim = np.ceil((vol_bnds[:, 1] - vol_bnds[:, 0]) / voxel_size).copy(order='C').astype(int)
xv, yv, zv = np.meshgrid(
range(vol_dim[0]),
range(vol_dim[1]),
range(vol_dim[2]),
indexing='ij'
)
vox_coords = np.concatenate([
xv.reshape(1, -1),
yv.reshape(1, -1),
zv.reshape(1, -1)
], axis=0).astype(int).T
# Project voxels'centroid from lidar coordinates to camera coordinates
cam_pts = TSDFVolume.vox2world(vox_origin, vox_coords, voxel_size)
cam_pts = rigid_transform(cam_pts, cam_E)
# Project camera coordinates to pixel positions
projected_pix = TSDFVolume.cam2pix(cam_pts, cam_k)
pix_x, pix_y = projected_pix[:, 0], projected_pix[:, 1]
# Eliminate pixels outside view frustum
pix_z = cam_pts[:, 2]
fov_mask = np.logical_and(pix_x >= 0,
np.logical_and(pix_x < img_W,
np.logical_and(pix_y >= 0,
np.logical_and(pix_y < img_H,
pix_z > 0))))
return cam_pts, fov_mask
def predict_grid(data_batch, net, points):
images = torch.stack(data_batch["imgs"], dim=0).unsqueeze(0).to(device).float()
poses = torch.tensor(np.stack(data_batch["poses"], 0)).unsqueeze(0).to(device).float()
projs = torch.tensor(np.stack(data_batch["projs"], 0)).unsqueeze(0).to(device).float()
poses = torch.inverse(poses[:, :1]) @ poses
n, nv, c, h, w = images.shape
net.compute_grid_transforms(projs, poses)
net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0])
net.set_scale(0)
# q_pts = get_pts(X_RANGE, Y_RANGE, Z_RANGE, p_res[1], p_res_y, p_res[0])
# q_pts = q_pts.to(device).reshape(1, -1, 3)
# # _, invalid, sigmas = net.forward(q_pts)
#
points = points.reshape(1, -1, 3)
_, invalid, sigmas, segs = net.forward(points, predict_segmentation=True)
return sigmas, segs
def convert_voxels(arr, map_dict):
f = np.vectorize(map_dict.__getitem__)
return f(arr)
def compute_occupancy_numbers_segmentation(y_pred, y_true, fov_mask, labels):
label_ids = list(labels.keys())[1:]
mask = y_true != 255
mask = np.logical_and(mask, fov_mask)
mask = mask.flatten()
y_pred = y_pred.flatten()[mask]
y_true = y_true.flatten()[mask]
tp = np.zeros(len(label_ids))
fp = np.zeros(len(label_ids))
fn = np.zeros(len(label_ids))
tn = np.zeros(len(label_ids))
for label_id in label_ids:
tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred == label_id))
fp[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred == label_id))
fn[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred != label_id))
tn[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred != label_id))
return tp, fp, tn, fn
def compute_occupancy_numbers(y_pred, y_true, fov_mask):
mask = y_true != 255
mask = np.logical_and(mask, fov_mask)
mask = mask.flatten()
y_pred = y_pred.flatten()
y_true = y_true.flatten()
occ_true = y_true[mask] > 0
occ_pred = y_pred[mask] > 0
tp = np.sum(np.logical_and(occ_true == 1, occ_pred == 1))
fp = np.sum(np.logical_and(occ_true == 0, occ_pred == 1))
fn = np.sum(np.logical_and(occ_true == 1, occ_pred == 0))
tn = np.sum(np.logical_and(occ_true == 0, occ_pred == 0))
return tp, fp, tn, fn
def read_calib():
"""
:param calib_path: Path to a calibration text file.
:return: dict with calibration matrices.
"""
P = np.array(
[
552.554261,
0.000000,
682.049453,
0.000000,
0.000000,
552.554261,
238.769549,
0.000000,
0.000000,
0.000000,
1.000000,
0.000000,
]
).reshape(3, 4)
cam2velo = np.array(
[
0.04307104361,
-0.08829286498,
0.995162929,
0.8043914418,
-0.999004371,
0.007784614041,
0.04392796942,
0.2993489574,
-0.01162548558,
-0.9960641394,
-0.08786966659,
-0.1770225824,
]
).reshape(3, 4)
C2V = np.concatenate(
[cam2velo, np.array([0, 0, 0, 1]).reshape(1, 4)], axis=0
)
# print("C2V: ", C2V)
V2C = np.linalg.inv(C2V)
# print("V2C: ", V2C)
V2C = V2C[:3, :]
# print("V2C: ", V2C)
# reshape matrices
calib_out = {}
# 3x4 projection matrix for left camera
calib_out["P2"] = P
calib_out["Tr"] = np.identity(4) # 4x4 matrix
calib_out["Tr"][:3, :4] = V2C
return calib_out
def get_cam_k():
cam_k = np.array(
[
552.554261,
0.000000,
682.049453,
0.000000,
0.000000,
552.554261,
238.769549,
0.000000,
0.000000,
0.000000,
1.000000,
0.000000,
]
).reshape(3, 4)
return cam_k[:3, :3]