File size: 6,815 Bytes
93c520c 8a85e81 f63cdc4 8a85e81 93c520c f63cdc4 93c520c 8a85e81 f63cdc4 93c520c 2ef655f 93c520c f63cdc4 93c520c f63cdc4 8183b3d 8a85e81 93c520c f63cdc4 8a85e81 f63cdc4 93c520c f63cdc4 93c520c f63cdc4 93c520c f63cdc4 23efa83 93c520c f63cdc4 93c520c f63cdc4 8a85e81 93c520c f63cdc4 93c520c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
from unsloth import FastLanguageModel
# Load model and tokenizer once at startup
model_name = "jsbeaudry/makandal-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Prepare model for inference
FastLanguageModel.for_inference(model)
think_token_id = tokenizer.convert_tokens_to_ids("</think>")
def generate_response_stream(prompt):
"""Generator function that yields streaming responses"""
# Format input for chat template
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
# Tokenize
model_inputs = tokenizer([text], return_tensors="pt")
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
# Setup streamer
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generation parameters
generation_kwargs = dict(
**model_inputs,
streamer=text_streamer,
max_new_tokens=100,
do_sample=True,
temperature=0.7,
top_p=0.9,
use_cache=True,
)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the response
full_response = ""
thinking_content = ""
content = ""
for new_text in text_streamer:
full_response += new_text
# Check if we've hit the think token
if "</think>" in full_response:
parts = full_response.split("</think>", 1)
thinking_content = parts[0].strip()
content = parts[1].strip() if len(parts) > 1 else ""
yield thinking_content, content
else:
# If no think token yet, everything is thinking content
thinking_content = full_response.strip()
yield thinking_content, content
# Final yield with complete response
if "</think>" in full_response:
parts = full_response.split("</think>", 1)
thinking_content = parts[0].strip()
content = parts[1].strip() if len(parts) > 1 else ""
else:
# If no think token found, treat everything as content
thinking_content = ""
content = full_response.strip()
yield thinking_content, content
def generate_response_interface(prompt):
"""Interface function for Gradio that handles streaming"""
for thinking, content in generate_response_stream(prompt):
yield thinking, content
# Gradio Interface with streaming
demo = gr.Interface(
fn=generate_response_interface,
inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
outputs=[
gr.Textbox(label="Thinking Content", interactive=False),
gr.Textbox(label="Respons", interactive=False)
],
title="Makandal Text Generator (Streaming)",
description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti.",
live=False # Set to True if you want real-time updates as user types
)
if __name__ == "__main__":
demo.launch()
# import torch
# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM
# # Load model and tokenizer once at startup
# model_name = "jsbeaudry/makandal-v2"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float16,
# device_map="auto"
# )
# think_token_id = tokenizer.convert_tokens_to_ids("</think>")
# def generate_response(prompt):
# # Format input for chat template
# messages = [{"role": "user", "content": prompt}]
# text = tokenizer.apply_chat_template(
# messages,
# tokenize=False,
# add_generation_prompt=True,
# enable_thinking=False
# )
# # Tokenize
# model_inputs = tokenizer([text], return_tensors="pt")
# model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
# # Generate
# generated_ids = model.generate(
# **model_inputs,
# max_new_tokens=100,
# do_sample=True,
# temperature=0.7,
# top_p=0.9
# )
# output_ids = generated_ids[0][len(model_inputs["input_ids"][0]):].tolist()
# try:
# index = len(output_ids) - output_ids[::-1].index(think_token_id)
# except ValueError:
# index = 0
# thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
# content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
# return thinking_content, content
# # Gradio Interface
# demo = gr.Interface(
# fn=generate_response,
# inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
# outputs=[
# # gr.Textbox(label="Thinking Content"),
# gr.Textbox(label="Respons")
# ],
# title="Makandal Text Generator",
# description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti."
# )
# if __name__ == "__main__":
# demo.launch()
# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch
# # Load model and tokenizer
# tokenizer = AutoTokenizer.from_pretrained("jsbeaudry/makandal-v2")
# model = AutoModelForCausalLM.from_pretrained("jsbeaudry/makandal-v2")
# # Set device
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model.to(device)
# # Generation function
# def generate_text(prompt):
# inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device)
# output = model.generate(
# **inputs,
# max_new_tokens=30,
# do_sample=True,
# repetition_penalty=1.2,
# no_repeat_ngram_size=3,
# temperature=0.9,
# top_k=40,
# top_p=0.85,
# pad_token_id=tokenizer.pad_token_id,
# eos_token_id=tokenizer.eos_token_id
# )
# return tokenizer.decode(output[0], skip_special_tokens=True)
# # Gradio interface
# iface = gr.Interface(
# fn=generate_text,
# inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
# outputs="text",
# title="Makandal Text Generator",
# description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti."
# )
# if __name__ == "__main__":
# iface.launch()
|