juzer09's picture
Upload 19 files
f280f9f verified
raw
history blame
13.1 kB
#!/usr/bin/env python3
"""
Madverse Music API
AI Music Detection Service
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, HttpUrl
import torch
import librosa
import tempfile
import os
import requests
from pathlib import Path
import time
from typing import Optional, Annotated, List
import uvicorn
import asyncio
# Initialize FastAPI app
app = FastAPI(
title="Madverse Music API",
description="AI-powered music detection API to identify AI-generated vs human-created music",
version="1.0.0",
docs_url="/",
redoc_url="/docs"
)
# API Key Configuration
API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo
# Global model variable
model = None
async def verify_api_key(x_api_key: Annotated[str | None, Header()] = None):
"""Verify API key from header"""
if x_api_key is None:
raise HTTPException(
status_code=401,
detail="Missing API key. Please provide a valid X-API-Key header."
)
if x_api_key != API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key. Please provide a valid X-API-Key header."
)
return x_api_key
class MusicAnalysisRequest(BaseModel):
urls: List[HttpUrl]
def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[str | None, Header()] = None):
"""Check API key before processing request"""
if x_api_key is None:
raise HTTPException(
status_code=401,
detail="Missing API key. Please provide a valid X-API-Key header."
)
if x_api_key != API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key. Please provide a valid X-API-Key header."
)
return request
class FileAnalysisResult(BaseModel):
url: str
success: bool
classification: Optional[str] = None # "Real" or "Fake"
confidence: Optional[float] = None # 0.0 to 1.0
probability: Optional[float] = None # Raw sigmoid probability
raw_score: Optional[float] = None # Raw model output
duration: Optional[float] = None # Audio duration in seconds
message: str
processing_time: Optional[float] = None
error: Optional[str] = None
class MusicAnalysisResponse(BaseModel):
success: bool
total_files: int
successful_analyses: int
failed_analyses: int
results: List[FileAnalysisResult]
total_processing_time: float
message: str
class ErrorResponse(BaseModel):
success: bool
error: str
message: str
@app.on_event("startup")
async def load_model():
"""Load the AI model on startup"""
global model
try:
from sonics import HFAudioClassifier
print("πŸ”„ Loading Madverse Music AI model...")
model = HFAudioClassifier.from_pretrained("awsaf49/sonics-spectttra-alpha-120s")
model.eval()
print("βœ… Model loaded successfully!")
except Exception as e:
print(f"❌ Failed to load model: {e}")
raise
def cleanup_file(file_path: str):
"""Background task to cleanup temporary files"""
try:
if os.path.exists(file_path):
os.unlink(file_path)
except:
pass
def download_audio(url: str, max_size_mb: int = 100) -> str:
"""Download audio file from URL with size validation"""
try:
# Check if URL is accessible
response = requests.head(str(url), timeout=10)
# Check content size
content_length = response.headers.get('Content-Length')
if content_length and int(content_length) > max_size_mb * 1024 * 1024:
raise HTTPException(
status_code=413,
detail=f"File too large. Maximum size: {max_size_mb}MB"
)
# Download file
response = requests.get(str(url), timeout=30, stream=True)
response.raise_for_status()
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as tmp_file:
downloaded_size = 0
for chunk in response.iter_content(chunk_size=8192):
downloaded_size += len(chunk)
if downloaded_size > max_size_mb * 1024 * 1024:
os.unlink(tmp_file.name)
raise HTTPException(
status_code=413,
detail=f"File too large. Maximum size: {max_size_mb}MB"
)
tmp_file.write(chunk)
return tmp_file.name
except requests.exceptions.RequestException as e:
raise HTTPException(
status_code=400,
detail=f"Failed to download audio: {str(e)}"
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error downloading file: {str(e)}"
)
def classify_audio(file_path: str) -> dict:
"""Classify audio file using the AI model"""
try:
# Load audio (model uses 16kHz sample rate)
audio, sr = librosa.load(file_path, sr=16000)
# Convert to tensor and add batch dimension
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
# Get prediction
with torch.no_grad():
output = model(audio_tensor)
# Convert logit to probability using sigmoid
prob = torch.sigmoid(output).item()
# Classify: prob < 0.5 = Real, prob >= 0.5 = Fake
if prob < 0.5:
classification = "Real"
confidence = (1 - prob) * 2 # Convert to 0-1 scale
else:
classification = "Fake"
confidence = (prob - 0.5) * 2 # Convert to 0-1 scale
return {
"classification": classification,
"confidence": min(confidence, 1.0), # Cap at 1.0
"probability": prob,
"raw_score": output.item(),
"duration": len(audio) / sr
}
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error analyzing audio: {str(e)}"
)
async def process_single_url(url: str) -> FileAnalysisResult:
"""Process a single URL and return result"""
start_time = time.time()
try:
# Download audio file
temp_file = download_audio(url)
# Classify audio
result = classify_audio(temp_file)
# Calculate processing time
processing_time = time.time() - start_time
# Cleanup file in background
try:
os.unlink(temp_file)
except:
pass
# Prepare response
emoji = "🎀" if result["classification"] == "Real" else "πŸ€–"
message = f'{emoji} Detected as {result["classification"].lower()} music'
return FileAnalysisResult(
url=str(url),
success=True,
classification=result["classification"],
confidence=result["confidence"],
probability=result["probability"],
raw_score=result["raw_score"],
duration=result["duration"],
message=message,
processing_time=processing_time
)
except Exception as e:
processing_time = time.time() - start_time
error_msg = str(e)
return FileAnalysisResult(
url=str(url),
success=False,
message=f"❌ Failed to process: {error_msg}",
processing_time=processing_time,
error=error_msg
)
@app.post("/analyze", response_model=MusicAnalysisResponse)
async def analyze_music(
request: MusicAnalysisRequest = Depends(check_api_key_first)
):
"""
Analyze music from URL(s) to detect if it's AI-generated or human-created
- **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG)
- Returns classification results for each file
- Processes files concurrently for better performance when multiple URLs provided
"""
start_time = time.time()
if not model:
raise HTTPException(
status_code=503,
detail="Model not loaded. Please try again later."
)
if len(request.urls) > 50: # Limit processing
raise HTTPException(
status_code=400,
detail="Too many URLs. Maximum 50 files per request."
)
if len(request.urls) == 0:
raise HTTPException(
status_code=400,
detail="At least one URL is required."
)
try:
# Process all URLs concurrently with limited concurrency
semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads
async def process_with_semaphore(url):
async with semaphore:
return await process_single_url(str(url))
# Create tasks for all URLs
tasks = [process_with_semaphore(url) for url in request.urls]
# Wait for all tasks to complete
results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results and handle any exceptions
processed_results = []
successful_count = 0
failed_count = 0
for i, result in enumerate(results):
if isinstance(result, Exception):
# Handle exception case
processed_results.append(FileAnalysisResult(
url=str(request.urls[i]),
success=False,
message=f"❌ Processing failed: {str(result)}",
error=str(result)
))
failed_count += 1
else:
processed_results.append(result)
if result.success:
successful_count += 1
else:
failed_count += 1
# Calculate total processing time
total_processing_time = time.time() - start_time
# Prepare summary message
total_files = len(request.urls)
if total_files == 1:
# Single file message
if successful_count == 1:
message = processed_results[0].message
else:
message = processed_results[0].message
else:
# Multiple files message
if successful_count == total_files:
message = f"βœ… Successfully analyzed all {total_files} files"
elif successful_count > 0:
message = f"⚠️ Analyzed {successful_count}/{total_files} files successfully"
else:
message = f"❌ Failed to analyze any files"
return MusicAnalysisResponse(
success=successful_count > 0,
total_files=total_files,
successful_analyses=successful_count,
failed_analyses=failed_count,
results=processed_results,
total_processing_time=total_processing_time,
message=message
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error during processing: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"model_loaded": model is not None,
"service": "Madverse Music API"
}
@app.get("/info")
async def get_info():
"""Get API information"""
return {
"name": "Madverse Music API",
"version": "1.0.0",
"description": "AI-powered music detection to identify AI-generated vs human-created music",
"model": "SpecTTTra-Ξ± (120s)",
"accuracy": {
"f1_score": 0.97,
"sensitivity": 0.96,
"specificity": 0.99
},
"supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"],
"max_file_size": "100MB",
"max_duration": "120 seconds",
"authentication": {
"required": True,
"type": "API Key",
"header": "X-API-Key",
"example": "X-API-Key: your-api-key-here"
},
"usage": {
"curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'"
}
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)