types_issues / app.py
karths's picture
Update app.py
60c708b verified
raw
history blame
5.83 kB
import gradio as gr
import os
import torch
import numpy as np
import random
from huggingface_hub import login, HfFolder
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from scipy.special import softmax
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
# Set a seed for reproducibility
seed = 42
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# Login to Hugging Face
token = os.getenv("hf_token")
HfFolder.save_token(token)
login(token)
# Model paths and quality mapping
model_paths = [
'karths/binary_classification_train_test',
'karths/binary_classification_train_requirement',
"karths/binary_classification_train_process",
"karths/binary_classification_train_infrastructure",
"karths/binary_classification_train_documentation",
"karths/binary_classification_train_design",
"karths/binary_classification_train_defect",
"karths/binary_classification_train_code",
"karths/binary_classification_train_build",
"karths/binary_classification_train_automation",
"karths/binary_classification_train_people",
"karths/binary_classification_train_architecture",
]
quality_mapping = {
'binary_classification_train_test': 'Test',
'binary_classification_train_requirement': 'Requirement',
'binary_classification_train_process': 'Process',
'binary_classification_train_infrastructure': 'Infrastructure',
'binary_classification_train_documentation': 'Documentation',
'binary_classification_train_design': 'Design',
'binary_classification_train_defect': 'Defect',
'binary_classification_train_code': 'Code',
'binary_classification_train_build': 'Build',
'binary_classification_train_automation': 'Automation',
'binary_classification_train_people': 'People',
'binary_classification_train_architecture':'Architecture'
}
# Pre-load models and tokenizer
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths}
def get_quality_name(model_name):
return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality")
def model_prediction(model, text, device):
model.to(device)
model.eval()
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = softmax(logits.cpu().numpy(), axis=1)
avg_prob = np.mean(probs[:, 1])
return avg_prob
def main_interface(text):
if not text.strip():
return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", ""
# Check for text length exceeding the limit
if len(text) < 30:
return "<div style='color: red;'>Text is less than 30 characters.</div>", ""
device = "cuda" if torch.cuda.is_available() else "cpu"
results = []
for model_path, model in models.items():
quality_name = get_quality_name(model_path)
avg_prob = model_prediction(model, text, device)
if avg_prob >= 0.90: # Only consider probabilities >= 0.90
results.append((quality_name, avg_prob))
logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}")
if not results: # If no results meet the criteria
return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold. </div>", ""
top_qualities = sorted(results, key=lambda x: x[1], reverse=True)[:3]
output_html = render_html_output(top_qualities)
return output_html, ""
def render_html_output(top_qualities):
styles = """
<style>
.quality-container {
font-family: Arial, sans-serif;
text-align: center;
margin-top: 20px;
}
.quality-label, .ranking {
display: inline-block;
padding: 0.5em 1em;
font-size: 18px;
font-weight: bold;
color: white;
background-color: #007bff;
border-radius: 0.5rem;
margin-right: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
.probability {
display: block;
margin-top: 10px;
font-size: 16px;
color: #007bff;
}
</style>
"""
html_content = ""
ranking_labels = ['Top 1 Prediction', 'Top 2 Prediction', 'Top 3 Prediction']
top_n = min(len(top_qualities), len(ranking_labels))
for i in range(top_n):
quality, prob = top_qualities[i]
html_content += f"""
<div class="quality-container">
<span class="ranking">{ranking_labels[i]}</span>
<span class="quality-label">{quality}</span>
</div>
"""
return styles + html_content
example_texts = [
["Issues with newer operating systems. The application fails to start or crashes shortly after launch, likely due to deprecated libraries.\n\nEnvironment: Desktop app version 1.8, Windows 11\nReproduction: Install on a system running Windows 11, attempt to launch the application."]
]
interface = gr.Interface(
fn=main_interface,
inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"),
outputs=[gr.HTML(label="Prediction Output"), gr.Textbox(label="Predictions", visible=False)],
title="QualityTagger",
description="This tool classifies text into different quality domains such as Security, Usability, etc.",
examples=example_texts
)
interface.launch(share=True)