Spaces:
Running
Running
File size: 5,342 Bytes
3455f8c 78ec26d 3455f8c f7bfc02 78ec26d 3455f8c f7bfc02 78ec26d f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 3455f8c f7bfc02 78ec26d f7bfc02 78ec26d 3455f8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import torch
import gradio as gr
from diffusers import (
StableDiffusionPipeline,
StableDiffusionInstructPix2PixPipeline,
StableVideoDiffusionPipeline,
WanPipeline,
)
from diffusers.utils import export_to_video, load_image
import random
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
MAX_SEED = np.iinfo(np.int32).max
# Model cache
TXT2IMG_PIPE = None
IMG2IMG_PIPE = None
TXT2VID_PIPE = None
IMG2VID_PIPE = None
def make_pipe(cls, model_id, **kwargs):
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
pipe.enable_model_cpu_offload()
return pipe
# Functions
def generate_image_from_text(prompt, seed, randomize_seed):
global TXT2IMG_PIPE
if TXT2IMG_PIPE is None:
TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base").to(device)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.manual_seed(seed)
image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0]
return image, seed
def generate_image_from_image_and_prompt(image, prompt, seed, randomize_seed):
global IMG2IMG_PIPE
if IMG2IMG_PIPE is None:
IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix").to(device)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.manual_seed(seed)
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator)
return out.images[0], seed
def generate_video_from_text(prompt, seed, randomize_seed):
global TXT2VID_PIPE
if TXT2VID_PIPE is None:
TXT2VID_PIPE = make_pipe(WanPipeline, "Wan-AI/Wan2.1-T2V-1.3B-Diffusers").to(device)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.manual_seed(seed)
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12, generator=generator).frames[0]
return export_to_video(frames, "/tmp/wan_video.mp4", fps=8), seed
def generate_video_from_image(image, seed, randomize_seed):
global IMG2VID_PIPE
if IMG2VID_PIPE is None:
IMG2VID_PIPE = make_pipe(StableVideoDiffusionPipeline, "stabilityai/stable-video-diffusion-img2vid-xt", variant="fp16" if dtype == torch.float16 else None).to(device)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.manual_seed(seed)
image = load_image(image).resize((512, 288))
frames = IMG2VID_PIPE(image=image, num_inference_steps=16, generator=generator).frames[0]
return export_to_video(frames, "/tmp/svd_video.mp4", fps=8), seed
# UI
with gr.Blocks(css="footer {display:none !important}") as demo:
gr.Markdown("# π§ AI Playground β Multi-Mode Generator")
with gr.Tabs():
# Text β Image
with gr.Tab("Text β Image"):
with gr.Row():
prompt_txt = gr.Textbox(label="Prompt")
generate_btn = gr.Button("Generate")
result_img = gr.Image()
seed_txt = gr.Slider(0, MAX_SEED, value=42, label="Seed")
rand_seed_txt = gr.Checkbox(label="Randomize seed", value=True)
generate_btn.click(
fn=generate_image_from_text,
inputs=[prompt_txt, seed_txt, rand_seed_txt],
outputs=[result_img, seed_txt]
)
# Image β Image
with gr.Tab("Image β Image"):
with gr.Row():
image_in = gr.Image(label="Input Image")
prompt_img = gr.Textbox(label="Edit Prompt")
generate_btn2 = gr.Button("Generate")
result_img2 = gr.Image()
seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed")
rand_seed_img = gr.Checkbox(label="Randomize seed", value=True)
generate_btn2.click(
fn=generate_image_from_image_and_prompt,
inputs=[image_in, prompt_img, seed_img, rand_seed_img],
outputs=[result_img2, seed_img]
)
# Text β Video
with gr.Tab("Text β Video"):
with gr.Row():
prompt_vid = gr.Textbox(label="Prompt")
generate_btn3 = gr.Button("Generate")
result_vid = gr.Video()
seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed")
rand_seed_vid = gr.Checkbox(label="Randomize seed", value=True)
generate_btn3.click(
fn=generate_video_from_text,
inputs=[prompt_vid, seed_vid, rand_seed_vid],
outputs=[result_vid, seed_vid]
)
# Image β Video
with gr.Tab("Image β Video"):
with gr.Row():
image_in_vid = gr.Image(label="Input Image")
generate_btn4 = gr.Button("Animate")
result_vid2 = gr.Video()
seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed")
rand_seed_vid2 = gr.Checkbox(label="Randomize seed", value=True)
generate_btn4.click(
fn=generate_video_from_image,
inputs=[image_in_vid, seed_vid2, rand_seed_vid2],
outputs=[result_vid2, seed_vid2]
)
demo.queue()
demo.launch(show_error=True)
|