Spaces:
Running
Running
import torch | |
import gradio as gr | |
from diffusers import ( | |
StableDiffusionPipeline, | |
StableDiffusionInstructPix2PixPipeline, | |
StableVideoDiffusionPipeline, | |
WanPipeline, | |
) | |
from diffusers.utils import export_to_video, load_image | |
import random | |
import numpy as np | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
MAX_SEED = np.iinfo(np.int32).max | |
# Model cache | |
TXT2IMG_PIPE = None | |
IMG2IMG_PIPE = None | |
TXT2VID_PIPE = None | |
IMG2VID_PIPE = None | |
def make_pipe(cls, model_id, **kwargs): | |
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs) | |
pipe.enable_model_cpu_offload() | |
return pipe | |
# Functions | |
def generate_image_from_text(prompt, seed, randomize_seed): | |
global TXT2IMG_PIPE | |
if TXT2IMG_PIPE is None: | |
TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base").to(device) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.manual_seed(seed) | |
image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0] | |
return image, seed | |
def generate_image_from_image_and_prompt(image, prompt, seed, randomize_seed): | |
global IMG2IMG_PIPE | |
if IMG2IMG_PIPE is None: | |
IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix").to(device) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.manual_seed(seed) | |
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator) | |
return out.images[0], seed | |
def generate_video_from_text(prompt, seed, randomize_seed): | |
global TXT2VID_PIPE | |
if TXT2VID_PIPE is None: | |
TXT2VID_PIPE = make_pipe(WanPipeline, "Wan-AI/Wan2.1-T2V-1.3B-Diffusers").to(device) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.manual_seed(seed) | |
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12, generator=generator).frames[0] | |
return export_to_video(frames, "/tmp/wan_video.mp4", fps=8), seed | |
def generate_video_from_image(image, seed, randomize_seed): | |
global IMG2VID_PIPE | |
if IMG2VID_PIPE is None: | |
IMG2VID_PIPE = make_pipe(StableVideoDiffusionPipeline, "stabilityai/stable-video-diffusion-img2vid-xt", variant="fp16" if dtype == torch.float16 else None).to(device) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.manual_seed(seed) | |
image = load_image(image).resize((512, 288)) | |
frames = IMG2VID_PIPE(image=image, num_inference_steps=16, generator=generator).frames[0] | |
return export_to_video(frames, "/tmp/svd_video.mp4", fps=8), seed | |
# UI | |
with gr.Blocks(css="footer {display:none !important}") as demo: | |
gr.Markdown("# π§ AI Playground β Multi-Mode Generator") | |
with gr.Tabs(): | |
# Text β Image | |
with gr.Tab("Text β Image"): | |
with gr.Row(): | |
prompt_txt = gr.Textbox(label="Prompt") | |
generate_btn = gr.Button("Generate") | |
result_img = gr.Image() | |
seed_txt = gr.Slider(0, MAX_SEED, value=42, label="Seed") | |
rand_seed_txt = gr.Checkbox(label="Randomize seed", value=True) | |
generate_btn.click( | |
fn=generate_image_from_text, | |
inputs=[prompt_txt, seed_txt, rand_seed_txt], | |
outputs=[result_img, seed_txt] | |
) | |
# Image β Image | |
with gr.Tab("Image β Image"): | |
with gr.Row(): | |
image_in = gr.Image(label="Input Image") | |
prompt_img = gr.Textbox(label="Edit Prompt") | |
generate_btn2 = gr.Button("Generate") | |
result_img2 = gr.Image() | |
seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed") | |
rand_seed_img = gr.Checkbox(label="Randomize seed", value=True) | |
generate_btn2.click( | |
fn=generate_image_from_image_and_prompt, | |
inputs=[image_in, prompt_img, seed_img, rand_seed_img], | |
outputs=[result_img2, seed_img] | |
) | |
# Text β Video | |
with gr.Tab("Text β Video"): | |
with gr.Row(): | |
prompt_vid = gr.Textbox(label="Prompt") | |
generate_btn3 = gr.Button("Generate") | |
result_vid = gr.Video() | |
seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed") | |
rand_seed_vid = gr.Checkbox(label="Randomize seed", value=True) | |
generate_btn3.click( | |
fn=generate_video_from_text, | |
inputs=[prompt_vid, seed_vid, rand_seed_vid], | |
outputs=[result_vid, seed_vid] | |
) | |
# Image β Video | |
with gr.Tab("Image β Video"): | |
with gr.Row(): | |
image_in_vid = gr.Image(label="Input Image") | |
generate_btn4 = gr.Button("Animate") | |
result_vid2 = gr.Video() | |
seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed") | |
rand_seed_vid2 = gr.Checkbox(label="Randomize seed", value=True) | |
generate_btn4.click( | |
fn=generate_video_from_image, | |
inputs=[image_in_vid, seed_vid2, rand_seed_vid2], | |
outputs=[result_vid2, seed_vid2] | |
) | |
demo.queue() | |
demo.launch(show_error=True) | |