Spaces:
Sleeping
Sleeping
File size: 9,307 Bytes
c034a74 ff704b5 2bb03a8 63d6fee 4196bc7 63d6fee 2bb03a8 ff704b5 63d6fee 4196bc7 63d6fee 4196bc7 63d6fee 4196bc7 60e1507 63d6fee c034a74 63d6fee 2bb03a8 63d6fee a318fb7 63d6fee 60e1507 63d6fee a318fb7 63d6fee 2bb03a8 908288f 63d6fee 2bb03a8 63d6fee 2bb03a8 63d6fee 4196bc7 2bb03a8 63d6fee 2bb03a8 63d6fee 2bb03a8 63d6fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# from fastapi import FastAPI, Response
# from fastapi.responses import FileResponse
# from kokoro import KPipeline
# import soundfile as sf
# import os
# import numpy as np
# import torch
# from huggingface_hub import InferenceClient
# def llm_chat_response(text):
# HF_TOKEN = os.getenv("HF_TOKEN")
# client = InferenceClient(api_key=HF_TOKEN)
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "text",
# "text": text + str('describe in one line only')
# } #,
# # {
# # "type": "image_url",
# # "image_url": {
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# # }
# # }
# ]
# }
# ]
# response_from_llama = client.chat.completions.create(
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
# messages=messages,
# max_tokens=500)
# return response_from_llama.choices[0].message['content']
# app = FastAPI()
# # Initialize pipeline once at startup
# pipeline = KPipeline(lang_code='a')
# @app.post("/generate")
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
# text_reply = llm_chat_response(text)
# # Generate audio
# generator = pipeline(
# text_reply,
# voice=voice,
# speed=speed,
# split_pattern=r'\n+'
# )
# # # Save first segment only for demo
# # for i, (gs, ps, audio) in enumerate(generator):
# # sf.write(f"output_{i}.wav", audio, 24000)
# # return FileResponse(
# # f"output_{i}.wav",
# # media_type="audio/wav",
# # filename="output.wav"
# # )
# # return Response("No audio generated", status_code=400)
# # Process only the first segment for demo
# for i, (gs, ps, audio) in enumerate(generator):
# # Convert PyTorch tensor to NumPy array
# audio_numpy = audio.cpu().numpy()
# # Convert to 16-bit PCM
# # Ensure the audio is in the range [-1, 1]
# audio_numpy = np.clip(audio_numpy, -1, 1)
# # Convert to 16-bit signed integers
# pcm_data = (audio_numpy * 32767).astype(np.int16)
# # Convert to bytes (automatically uses row-major order)
# raw_audio = pcm_data.tobytes()
# # Return PCM data with minimal necessary headers
# return Response(
# content=raw_audio,
# media_type="application/octet-stream",
# headers={
# "Content-Disposition": f'attachment; filename="output.pcm"',
# "X-Sample-Rate": "24000",
# "X-Bits-Per-Sample": "16",
# "X-Endianness": "little"
# }
# )
# return Response("No audio generated", status_code=400)
import os
import logging
import base64
from typing import Optional
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from requests.exceptions import HTTPError
import uuid
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="LLM Chat API",
description="API for getting chat responses from Llama model (supports text and image input)",
version="1.0.0"
)
# Directory to save images
STATIC_DIR = "static_images"
if not os.path.exists(STATIC_DIR):
os.makedirs(STATIC_DIR)
# Pydantic models
class ChatRequest(BaseModel):
text: str
image_url: Optional[str] = None # In this updated version, this field is expected to be a base64 encoded image
class ChatResponse(BaseModel):
response: str
status: str
def llm_chat_response(text: str, image_base64: Optional[str] = None) -> str:
try:
HF_TOKEN = os.getenv("HF_TOKEN")
logger.info("Checking HF_TOKEN...")
if not HF_TOKEN:
logger.error("HF_TOKEN not found in environment variables")
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
logger.info("Initializing InferenceClient...")
client = InferenceClient(
provider="hf-inference", # Updated provider
api_key=HF_TOKEN
)
# Build the messages payload.
# For text-only queries, append a default instruction.
message_content = [{
"type": "text",
"text": text + ("" if image_base64 else " describe in one line only")
}]
if image_base64:
logger.info("Saving base64 encoded image to file...")
# Decode and save the image locally
filename = f"{uuid.uuid4()}.jpg"
image_path = os.path.join(STATIC_DIR, filename)
try:
image_data = base64.b64decode(image_base64)
except Exception as e:
logger.error(f"Error decoding image: {str(e)}")
raise HTTPException(status_code=400, detail="Invalid base64 image data")
with open(image_path, "wb") as f:
f.write(image_data)
# Construct public URL for the saved image.
# Set BASE_URL to your public URL if needed.
base_url = os.getenv("BASE_URL", "http://localhost:8000")
public_image_url = f"{base_url}/{STATIC_DIR}/{filename}"
logger.info(f"Using saved image URL: {public_image_url}")
message_content.append({
"type": "image_url",
"image_url": {"url": public_image_url}
})
messages = [{
"role": "user",
"content": message_content
}]
logger.info("Sending request to model...")
try:
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
except HTTPError as http_err:
logger.error(f"HTTP error occurred: {http_err.response.text}")
raise HTTPException(status_code=500, detail=http_err.response.text)
logger.info(f"Raw model response: {completion}")
if getattr(completion, "error", None):
error_details = completion.error
error_message = error_details.get("message", "Unknown error")
logger.error(f"Model returned error: {error_message}")
raise HTTPException(status_code=500, detail=f"Model returned error: {error_message}")
if not completion.choices or len(completion.choices) == 0:
logger.error("No choices returned from model.")
raise HTTPException(status_code=500, detail="Model returned no choices.")
# Extract the response message from the first choice.
choice = completion.choices[0]
response_message = None
if hasattr(choice, "message"):
response_message = choice.message
elif isinstance(choice, dict):
response_message = choice.get("message")
if not response_message:
logger.error(f"Response message is empty: {choice}")
raise HTTPException(status_code=500, detail="Model response did not include a message.")
content = None
if isinstance(response_message, dict):
content = response_message.get("content")
if content is None and hasattr(response_message, "content"):
content = response_message.content
if not content:
logger.error(f"Message content is missing: {response_message}")
raise HTTPException(status_code=500, detail="Model message did not include content.")
return content
except Exception as e:
logger.error(f"Error in llm_chat_response: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
try:
logger.info(f"Received chat request with text: {request.text}")
if request.image_url:
logger.info("Image data provided.")
response = llm_chat_response(request.text, request.image_url)
return ChatResponse(response=response, status="success")
except HTTPException as he:
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
raise he
except Exception as e:
logger.error(f"Unexpected error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint with 'text' and optionally 'image_url' (base64 encoded) for queries."}
@app.exception_handler(404)
async def not_found_handler(request, exc):
return JSONResponse(
status_code=404,
content={"error": "Endpoint not found. Please use POST /chat for queries."}
)
@app.exception_handler(405)
async def method_not_allowed_handler(request, exc):
return JSONResponse(
status_code=405,
content={"error": "Method not allowed. Please check the API documentation."}
)
|