Spaces:
Sleeping
Sleeping
# from fastapi import FastAPI, Response | |
# from fastapi.responses import FileResponse | |
# from kokoro import KPipeline | |
# import soundfile as sf | |
# import os | |
# import numpy as np | |
# import torch | |
# from huggingface_hub import InferenceClient | |
# def llm_chat_response(text): | |
# HF_TOKEN = os.getenv("HF_TOKEN") | |
# client = InferenceClient(api_key=HF_TOKEN) | |
# messages = [ | |
# { | |
# "role": "user", | |
# "content": [ | |
# { | |
# "type": "text", | |
# "text": text + str('describe in one line only') | |
# } #, | |
# # { | |
# # "type": "image_url", | |
# # "image_url": { | |
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" | |
# # } | |
# # } | |
# ] | |
# } | |
# ] | |
# response_from_llama = client.chat.completions.create( | |
# model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
# messages=messages, | |
# max_tokens=500) | |
# return response_from_llama.choices[0].message['content'] | |
# app = FastAPI() | |
# # Initialize pipeline once at startup | |
# pipeline = KPipeline(lang_code='a') | |
# @app.post("/generate") | |
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0): | |
# text_reply = llm_chat_response(text) | |
# # Generate audio | |
# generator = pipeline( | |
# text_reply, | |
# voice=voice, | |
# speed=speed, | |
# split_pattern=r'\n+' | |
# ) | |
# # # Save first segment only for demo | |
# # for i, (gs, ps, audio) in enumerate(generator): | |
# # sf.write(f"output_{i}.wav", audio, 24000) | |
# # return FileResponse( | |
# # f"output_{i}.wav", | |
# # media_type="audio/wav", | |
# # filename="output.wav" | |
# # ) | |
# # return Response("No audio generated", status_code=400) | |
# # Process only the first segment for demo | |
# for i, (gs, ps, audio) in enumerate(generator): | |
# # Convert PyTorch tensor to NumPy array | |
# audio_numpy = audio.cpu().numpy() | |
# # Convert to 16-bit PCM | |
# # Ensure the audio is in the range [-1, 1] | |
# audio_numpy = np.clip(audio_numpy, -1, 1) | |
# # Convert to 16-bit signed integers | |
# pcm_data = (audio_numpy * 32767).astype(np.int16) | |
# # Convert to bytes (automatically uses row-major order) | |
# raw_audio = pcm_data.tobytes() | |
# # Return PCM data with minimal necessary headers | |
# return Response( | |
# content=raw_audio, | |
# media_type="application/octet-stream", | |
# headers={ | |
# "Content-Disposition": f'attachment; filename="output.pcm"', | |
# "X-Sample-Rate": "24000", | |
# "X-Bits-Per-Sample": "16", | |
# "X-Endianness": "little" | |
# } | |
# ) | |
# return Response("No audio generated", status_code=400) | |
import os | |
import logging | |
import base64 | |
from typing import Optional | |
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import JSONResponse | |
from pydantic import BaseModel | |
from huggingface_hub import InferenceClient | |
from requests.exceptions import HTTPError | |
import uuid | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Initialize FastAPI app | |
app = FastAPI( | |
title="LLM Chat API", | |
description="API for getting chat responses from Llama model (supports text and image input)", | |
version="1.0.0" | |
) | |
# Directory to save images | |
STATIC_DIR = "static_images" | |
if not os.path.exists(STATIC_DIR): | |
os.makedirs(STATIC_DIR) | |
# Pydantic models | |
class ChatRequest(BaseModel): | |
text: str | |
image_url: Optional[str] = None # In this updated version, this field is expected to be a base64 encoded image | |
class ChatResponse(BaseModel): | |
response: str | |
status: str | |
def llm_chat_response(text: str, image_base64: Optional[str] = None) -> str: | |
try: | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
logger.info("Checking HF_TOKEN...") | |
if not HF_TOKEN: | |
logger.error("HF_TOKEN not found in environment variables") | |
raise HTTPException(status_code=500, detail="HF_TOKEN not configured") | |
logger.info("Initializing InferenceClient...") | |
client = InferenceClient( | |
provider="hf-inference", # Updated provider | |
api_key=HF_TOKEN | |
) | |
# Build the messages payload. | |
# For text-only queries, append a default instruction. | |
message_content = [{ | |
"type": "text", | |
"text": text + ("" if image_base64 else " describe in one line only") | |
}] | |
if image_base64: | |
logger.info("Saving base64 encoded image to file...") | |
# Decode and save the image locally | |
filename = f"{uuid.uuid4()}.jpg" | |
image_path = os.path.join(STATIC_DIR, filename) | |
try: | |
image_data = base64.b64decode(image_base64) | |
except Exception as e: | |
logger.error(f"Error decoding image: {str(e)}") | |
raise HTTPException(status_code=400, detail="Invalid base64 image data") | |
with open(image_path, "wb") as f: | |
f.write(image_data) | |
# Construct public URL for the saved image. | |
# Set BASE_URL to your public URL if needed. | |
base_url = os.getenv("BASE_URL", "http://localhost:8000") | |
public_image_url = f"{base_url}/{STATIC_DIR}/{filename}" | |
logger.info(f"Using saved image URL: {public_image_url}") | |
message_content.append({ | |
"type": "image_url", | |
"image_url": {"url": public_image_url} | |
}) | |
messages = [{ | |
"role": "user", | |
"content": message_content | |
}] | |
logger.info("Sending request to model...") | |
try: | |
completion = client.chat.completions.create( | |
model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
messages=messages, | |
max_tokens=500 | |
) | |
except HTTPError as http_err: | |
logger.error(f"HTTP error occurred: {http_err.response.text}") | |
raise HTTPException(status_code=500, detail=http_err.response.text) | |
logger.info(f"Raw model response: {completion}") | |
if getattr(completion, "error", None): | |
error_details = completion.error | |
error_message = error_details.get("message", "Unknown error") | |
logger.error(f"Model returned error: {error_message}") | |
raise HTTPException(status_code=500, detail=f"Model returned error: {error_message}") | |
if not completion.choices or len(completion.choices) == 0: | |
logger.error("No choices returned from model.") | |
raise HTTPException(status_code=500, detail="Model returned no choices.") | |
# Extract the response message from the first choice. | |
choice = completion.choices[0] | |
response_message = None | |
if hasattr(choice, "message"): | |
response_message = choice.message | |
elif isinstance(choice, dict): | |
response_message = choice.get("message") | |
if not response_message: | |
logger.error(f"Response message is empty: {choice}") | |
raise HTTPException(status_code=500, detail="Model response did not include a message.") | |
content = None | |
if isinstance(response_message, dict): | |
content = response_message.get("content") | |
if content is None and hasattr(response_message, "content"): | |
content = response_message.content | |
if not content: | |
logger.error(f"Message content is missing: {response_message}") | |
raise HTTPException(status_code=500, detail="Model message did not include content.") | |
return content | |
except Exception as e: | |
logger.error(f"Error in llm_chat_response: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def chat(request: ChatRequest): | |
try: | |
logger.info(f"Received chat request with text: {request.text}") | |
if request.image_url: | |
logger.info("Image data provided.") | |
response = llm_chat_response(request.text, request.image_url) | |
return ChatResponse(response=response, status="success") | |
except HTTPException as he: | |
logger.error(f"HTTP Exception in chat endpoint: {str(he)}") | |
raise he | |
except Exception as e: | |
logger.error(f"Unexpected error in chat endpoint: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def root(): | |
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint with 'text' and optionally 'image_url' (base64 encoded) for queries."} | |
async def not_found_handler(request, exc): | |
return JSONResponse( | |
status_code=404, | |
content={"error": "Endpoint not found. Please use POST /chat for queries."} | |
) | |
async def method_not_allowed_handler(request, exc): | |
return JSONResponse( | |
status_code=405, | |
content={"error": "Method not allowed. Please check the API documentation."} | |
) | |