Tanut
Checkconnect
1fc8d06
raw
history blame
3.92 kB
# import gradio as gr
# import torch
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from PIL import Image
# import base64
# from io import BytesIO
# # You can change these:
# BASE_MODEL = "runwayml/stable-diffusion-v1-5"
# CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one
# device = "cuda" if torch.cuda.is_available() else "cpu"
# controlnet = ControlNetModel.from_pretrained(
# CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
# )
# pipe = StableDiffusionControlNetPipeline.from_pretrained(
# BASE_MODEL,
# controlnet=controlnet,
# torch_dtype=torch.float16 if device=="cuda" else torch.float32,
# safety_checker=None
# )
# pipe.to(device)
# def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
# print("API called:", type(control_image))
# generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
# img = pipe(
# prompt=prompt,
# image=control_image,
# num_inference_steps=int(steps),
# guidance_scale=float(guidance_scale),
# generator=generator
# ).images[0]
# return img
# with gr.Blocks() as demo:
# gr.Markdown("# ControlNet Image Generator")
# with gr.Row():
# prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
# seed = gr.Number(label="Seed (0=random)", value=0)
# with gr.Row():
# control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
# steps = gr.Slider(10, 50, 30, step=1, label="Steps")
# guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
# out = gr.Image(label="Result")
# btn = gr.Button("Generate")
# btn.click(generate, [prompt, control, guidance, steps, seed], out)
# # Enable simple API use
# gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)
# demo.launch()
# app.py — minimal, API-stable echo server + Gradio UI
import base64, io
from typing import List, Any
from PIL import Image
import gradio as gr
from fastapi import FastAPI
from pydantic import BaseModel
# ---- helpers ----
def data_url_to_pil(data_url: str) -> Image.Image:
# expects "data:image/<ext>;base64,<...>"
b64 = data_url.split(",", 1)[1]
return Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")
def pil_to_data_url(img: Image.Image) -> str:
buf = io.BytesIO()
img.save(buf, format="PNG")
return "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()
# ---- your model fn (for now just echo control image) ----
def generate(prompt: str, control_image: Image.Image, guidance: float, steps: int, seed: int):
# TODO: replace with ControlNet pipeline call
return control_image
# ---- Gradio UI (not required for API, but nice to see) ----
demo = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Prompt", value="High-quality artistic style, preserve structure"),
gr.Image(type="pil", label="Control Image (PNG/JPG)"),
gr.Slider(1, 12, 7.5, step=0.1, label="Guidance scale"),
gr.Slider(10, 50, 30, step=1, label="Steps"),
gr.Number(0, label="Seed"),
],
outputs=gr.Image(label="Result"),
)
# ---- FastAPI endpoint (stable path for Postman/Next.js) ----
app = FastAPI()
class PredictIn(BaseModel):
data: List[Any] # [prompt, controlImageBase64, guidance, steps, seed]
@app.post("/api/predict/0")
def predict(payload: PredictIn):
prompt, control_b64, guidance, steps, seed = payload.data
img = data_url_to_pil(control_b64) if isinstance(control_b64, str) else control_b64
out = generate(str(prompt), img, float(guidance), int(steps), int(seed))
return { "data": [ pil_to_data_url(out) ] }
# mount Gradio at "/"
app = gr.mount_gradio_app(app, demo, path="/")