Spaces:
Runtime error
A newer version of the Gradio SDK is available:
5.42.0
title: PLONK Geolocation
emoji: πΊοΈ
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
short_description: Generative Visual Geolocation with PLONK
πΊοΈ PLONK: Around the World in 80 Timesteps
A generative approach to global visual geolocation using diffusion models. Upload an image and PLONK will predict where it was taken!
π Features
- High-Quality Predictions: Uses 32 samples with CFG=2.0 for robust geolocation
- Uncertainty Estimation: Provides confidence radius (Β±km) for each prediction
- REST API: Full programmatic access with JSON responses
- Multiple Input Methods: File upload, webcam, clipboard, or base64 encoding
- CORS Enabled: Ready for web integration
π‘ API Usage
REST API Endpoints
Main Prediction:
POST https://kylanoconnor-plonk-geolocation.hf.space/api/predict
JSON Response:
POST https://kylanoconnor-plonk-geolocation.hf.space/api/predict_json
Python Example
import requests
# Upload image file
response = requests.post(
"https://kylanoconnor-plonk-geolocation.hf.space/api/predict",
files={"file": open("image.jpg", "rb")}
)
result = response.json()
print(f"Location: {result['data']['latitude']}, {result['data']['longitude']}")
print(f"Uncertainty: Β±{result['data']['uncertainty_km']} km")
cURL Example
curl -X POST \
-F "[email protected]" \
"https://kylanoconnor-plonk-geolocation.hf.space/api/predict"
JavaScript/Node.js
const formData = new FormData();
formData.append('data', imageFile);
const response = await fetch(
'https://kylanoconnor-plonk-geolocation.hf.space/api/predict',
{
method: 'POST',
body: formData
}
);
const result = await response.json();
console.log('Location:', result.data);
Gradio Client (Python)
from gradio_client import Client
client = Client("kylanoconnor/plonk-geolocation")
result = client.predict("path/to/image.jpg", api_name="/predict")
print(result)
π― Model Configuration
- Model: nicolas-dufour/PLONK_YFCC
- Dataset: YFCC-100M
- Samples: 32 (for uncertainty estimation)
- Guidance Scale: 2.0
- Timesteps: 32
- Uncertainty: Statistical analysis across predictions
π Response Format
{
"status": "success",
"mode": "production",
"predicted_location": {
"latitude": 40.756123,
"longitude": -73.984567
},
"confidence": "high",
"samples": 32,
"uncertainty_km": 12.3,
"note": "Real PLONK prediction using 32 samples"
}
π About
Paper: Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation
Authors: Nicolas Dufour, David Picard, Vicky Kalogeiton, Loic Landrieu
Original Code: https://github.com/nicolas-dufour/plonk
This Space provides both a user-friendly web interface and robust API access for global visual geolocation using the PLONK model. The model uses 32 samples per prediction to provide uncertainty estimation and more reliable results.
π§ Development
To run locally:
pip install -r requirements_hf_spaces.txt
python app.py
The app will be available at http://localhost:7860
with API documentation at /docs
.
Built with β€οΈ using Gradio and Hugging Face Spaces